某外語學校在圣誕節(jié)要舉行匯報演出,需要準備一些圣誕帽,為了培養(yǎng)學生的動手能力,學校決定自己制作這些圣誕帽.如果圣誕帽(圓錐形狀)的規(guī)格是母線長42厘米,底面直徑為16厘米.

⑴ 求圣誕帽的側(cè)面展開圖(扇形)的圓心角的度數(shù)(精確到度);

⑵ 已知A種規(guī)格的紙片能做3個圣誕帽,B種規(guī)格的紙片能做4個圣誕帽,匯報演出需要26個圣誕帽,寫出A種規(guī)格的紙片y張與B種規(guī)格的紙片x張之間的函數(shù)關(guān)系式及其x的最大值與最小值;若自己制作時,A、B兩種規(guī)格的紙片各買多少張時,才不會浪費紙張?

⑶ 現(xiàn)有一張邊長為79厘米的正方形紙片,它最多能制作幾個這種規(guī)格的圣誕帽(圣誕帽的粘接處忽略不計).請在比例尺為1:15的正方形紙片上畫出圣誕帽的側(cè)面展開圖的裁剪草圖,并利用所學的數(shù)學知識說明其可行性.

 


⑴圣誕帽的側(cè)面展開圖是一個扇形,則扇形的弧長是16,扇形的圓心角是

,由y≥0,得x的最大值是,最小值是0.

顯然,x、y必須取整數(shù),才不會浪費紙張. 

由x=1時,;        x=2時,y=6;            x=3時,; 

   x=4時,           x=5時,y=2;          x=6時,     

故A、B兩種規(guī)格的紙片各買6張、2張或2張、5張時,才不會浪費紙張.   

⑶裁剪草圖,如圖.

設(shè)相鄰兩個扇形的圓弧相交于點P,則PD=PC.

過點P作DC的垂線PM交DC于M,

則CM=DC=×79=39.5  又CP=42,

所以,

所以<(),

又42+42<79,所以這樣的裁剪草圖是可行的.

 


練習冊系列答案
相關(guān)習題

科目:初中數(shù)學 來源: 題型:

某外語學校在圣誕節(jié)要舉行匯報演出,需要準備一些圣誕帽,為了培養(yǎng)學生的動手能力,學校決定自己制作這些圣誕帽.如果圣誕帽(圓錐形狀)的規(guī)格是母線長42厘米,底面直徑為16厘米.
(1)求圣誕帽的側(cè)面展開圖(扇形)的圓心角的度數(shù)(精確到度);
(2)已知A種規(guī)格的紙片能做3個圣誕帽,B種規(guī)格的紙片能做4個圣誕帽,匯報演出需要26個圣誕帽,寫出A種規(guī)格的紙片y張與B種規(guī)格的紙片x張之間的函數(shù)關(guān)系式及其x的最大值與最小值;若自己制作時,A、B兩種規(guī)格的紙片各買多少張時,才不會浪費紙張?
(3)現(xiàn)有一張邊長為79厘米的正方形紙片,它最多能制作幾個這種規(guī)格的圣誕帽(圣誕帽的粘接處忽略不計).請在比例尺為1:15的正方形紙片上畫出圣誕帽的側(cè)面展開圖的裁剪草圖,并利用所學的數(shù)學知識說明其可行性.
精英家教網(wǎng)

查看答案和解析>>

科目:初中數(shù)學 來源: 題型:

某外語學校在圣誕節(jié)要舉行匯報演出,需要準備一些圣誕帽,為了培養(yǎng)學生的動手能力,學校決定自己制作這些圣誕帽.如果圣誕帽(圓錐形狀)的規(guī)格是母線長42厘米,底面直徑為16厘米.

⑴ 求圣誕帽的側(cè)面展開圖(扇形)的圓心角的度數(shù)(精確到度);

⑵ 已知A種規(guī)格的紙片能做3個圣誕帽,B種規(guī)格的紙片能做4個圣誕帽,匯報演出需要26個圣誕帽,寫出A種規(guī)格的紙片y張與B種規(guī)格的紙片x張之間的函數(shù)關(guān)系式及其x的最大值與最小值;若自己制作時,A、B兩種規(guī)格的紙片各買多少張時,才不會浪費紙張?

⑶ 現(xiàn)有一張邊長為79厘米的正方形紙片,它最多能制作幾個這種規(guī)格的圣誕帽(圣誕帽的粘接處忽略不計).請在比例尺為1:15的正方形紙片上畫出圣誕帽的側(cè)面展開圖的裁剪草圖,并利用所學的數(shù)學知識說明其可行性.

 


查看答案和解析>>

科目:初中數(shù)學 來源:2012年廣東省華師附中實驗學校中考數(shù)學模擬試卷(一)(解析版) 題型:解答題

某外語學校在圣誕節(jié)要舉行匯報演出,需要準備一些圣誕帽,為了培養(yǎng)學生的動手能力,學校決定自己制作這些圣誕帽.如果圣誕帽(圓錐形狀)的規(guī)格是母線長42厘米,底面直徑為16厘米.
(1)求圣誕帽的側(cè)面展開圖(扇形)的圓心角的度數(shù)(精確到度);
(2)已知A種規(guī)格的紙片能做3個圣誕帽,B種規(guī)格的紙片能做4個圣誕帽,匯報演出需要26個圣誕帽,寫出A種規(guī)格的紙片y張與B種規(guī)格的紙片x張之間的函數(shù)關(guān)系式及其x的最大值與最小值;若自己制作時,A、B兩種規(guī)格的紙片各買多少張時,才不會浪費紙張?
(3)現(xiàn)有一張邊長為79厘米的正方形紙片,它最多能制作幾個這種規(guī)格的圣誕帽(圣誕帽的粘接處忽略不計).請在比例尺為1:15的正方形紙片上畫出圣誕帽的側(cè)面展開圖的裁剪草圖,并利用所學的數(shù)學知識說明其可行性.

查看答案和解析>>

科目:初中數(shù)學 來源:2010年中考數(shù)學考前10日信息題復習題精選(1)(解析版) 題型:解答題

某外語學校在圣誕節(jié)要舉行匯報演出,需要準備一些圣誕帽,為了培養(yǎng)學生的動手能力,學校決定自己制作這些圣誕帽.如果圣誕帽(圓錐形狀)的規(guī)格是母線長42厘米,底面直徑為16厘米.
(1)求圣誕帽的側(cè)面展開圖(扇形)的圓心角的度數(shù)(精確到度);
(2)已知A種規(guī)格的紙片能做3個圣誕帽,B種規(guī)格的紙片能做4個圣誕帽,匯報演出需要26個圣誕帽,寫出A種規(guī)格的紙片y張與B種規(guī)格的紙片x張之間的函數(shù)關(guān)系式及其x的最大值與最小值;若自己制作時,A、B兩種規(guī)格的紙片各買多少張時,才不會浪費紙張?
(3)現(xiàn)有一張邊長為79厘米的正方形紙片,它最多能制作幾個這種規(guī)格的圣誕帽(圣誕帽的粘接處忽略不計).請在比例尺為1:15的正方形紙片上畫出圣誕帽的側(cè)面展開圖的裁剪草圖,并利用所學的數(shù)學知識說明其可行性.

查看答案和解析>>

同步練習冊答案