分析 (1)先根據勾股定理求出AB的長,再由三角形的面積公式即可得出結論;
(2)先用t表示出DP,CQ,CP的長,再根據PQ∥AB,得到△QCP∽△ABC,根據相似三角形的性質列方程即可得到結論;
(3)根據題意畫出圖形,分CQ=CP,PQ=PC,QC=QP三種情況進行討論.
解答 解:(1)∵∠ACB=90°,AC=8,BC=6,
∴AB=10.
∵CD⊥AB,
∴S△ABC=$\frac{1}{2}$BC•AC=$\frac{1}{2}$AB•CD.
∴CD=$\frac{BC•AC}{AB}$=$\frac{6×8}{10}$=4.8.
∴線段CD的長為4.8.
(2)設DP=t,CQ=t.則CP=4.8-t.
∵PQ∥AB,
∵△QCP∽△ABC
∴$\frac{CQ}{AB}=\frac{CP}{BC}$,即$\frac{t}{10}=\frac{4.8-t}{6}$,
∴t=3,
當t=3時,PQ∥AB;
(3)①若CQ=CP,如圖1,
則t=4.8-t.
解得:t=2.4.
②若PQ=PC,如圖2所示.
∵PQ=PC,PH⊥QC,
∴QH=CH=$\frac{1}{2}$QC=$\frac{t}{2}$.
∵△CHP∽△BCA.
∴$\frac{CH}{BC}=\frac{CP}{AB}$,
∴$\frac{\frac{t}{2}}{6}$=$\frac{4.8-t}{10}$,解得t=$\frac{144}{55}$;
③若QC=QP,
過點Q作QE⊥CP,垂足為E,如圖3所示.
同理可得:t=$\frac{24}{11}$.
綜上所述:當t為2.4秒或$\frac{144}{55}$秒或$\frac{24}{11}$秒時,△CPQ為等腰三角形.
點評 本題考查的是相似形綜合題,涉及到相似三角形的判定與性質,等腰三角形的判定和性質,三角形的面積的計算,在解答此題時要注意進行分類討論.
科目:初中數(shù)學 來源: 題型:選擇題
A. | 600-600$\sqrt{3}$ | B. | 600+600$\sqrt{3}$ | C. | 900-300$\sqrt{3}$ | D. | 900+300$\sqrt{3}$ |
查看答案和解析>>
科目:初中數(shù)學 來源: 題型:填空題
查看答案和解析>>
科目:初中數(shù)學 來源: 題型:選擇題
A. | 30° | B. | 45° | C. | 60° | D. | 75° |
查看答案和解析>>
科目:初中數(shù)學 來源: 題型:填空題
查看答案和解析>>
科目:初中數(shù)學 來源: 題型:選擇題
A. | $-\frac{2}{3}$ | B. | -2 | C. | 2 | D. | $\frac{2}{3}$ |
查看答案和解析>>
科目:初中數(shù)學 來源: 題型:解答題
查看答案和解析>>
湖北省互聯(lián)網違法和不良信息舉報平臺 | 網上有害信息舉報專區(qū) | 電信詐騙舉報專區(qū) | 涉歷史虛無主義有害信息舉報專區(qū) | 涉企侵權舉報專區(qū)
違法和不良信息舉報電話:027-86699610 舉報郵箱:58377363@163.com