【題目】某校女子排球隊隊員的年齡分布如下表:
年齡 | 13 | 14 | 15 |
人數 | 4 | 7 | 4 |
則該校女子排球隊隊員的平均年齡是歲.
科目:初中數學 來源: 題型:
【題目】文文和彬彬在證明“有兩個角相等的三角形是等腰三角形”這一命題時,畫出圖形,寫出“已知”,“求證”(如圖),她們對各自所作的輔助線描述如下:
文文:“過點A作BC的中垂線AD,垂足為D”;
彬彬:“作△ABC的角平分線AD”.
數學老師看了兩位同學的輔助線作法后,說:“彬彬的作法是正確的,而文文的作法需要訂正.”
(1)請你簡要說明文文的輔助線作法錯在哪里;
(2)根據彬彬的輔助線作法,完成證明過程.
查看答案和解析>>
科目:初中數學 來源: 題型:
【題目】已知拋物線與x軸交于A(6,0)、B(,0)兩點,與y軸交于點C,過拋物線上點M(1,3)作MN⊥x軸于點N,連接OM.
(1)求此拋物線的解析式;
(2)如圖1,將△OMN沿x軸向右平移t個單位(0≤t≤5)到△O′M′N′的位置,MN′、M′O′與直線AC分別交于點E、F.
①當點F為M′O′的中點時,求t的值;
②如圖2,若直線M′N′與拋物線相交于點G,過點G作GH∥M′O′交AC于點H,試確定線段EH是否存在最大值?若存在,求出它的最大值及此時t的值;若不存在,請說明理由.
查看答案和解析>>
科目:初中數學 來源: 題型:
【題目】定義:有一組對角相等而另一組對角不相等的凸四邊形叫做“等對角四邊形”.
(1)已知:如圖1,四邊形是“等對角四邊形”, , , .求, 的度數.
(2)在探究“等對角四邊形”性質時:
① 小紅畫了一個“等對角四邊形”(如圖2),其中, ,此時她發(fā)現(xiàn)成立.請你證明此結論.
② 由此小紅猜想:“對于任意‘等對角四邊形’,當一組鄰邊相等時,另一組鄰邊也相等”.你認為她的猜想正確嗎?若正確,請證明;若不正確,請舉出反例.
(3)已知:在“等對角四邊形”中, , ,AB=AD=4,.求∠D和對角線的長.
查看答案和解析>>
科目:初中數學 來源: 題型:
【題目】圖1、圖2是兩張形狀和大小完全相同的方格紙,方格紙中每個小正方形的邊長均為1,線段AC的兩個端點均在小正方形的頂點上.
(1)如圖1,點P在小正方形的頂點上,在圖1中作出點P關于直線AC的對稱點Q,連接AQ、QC、CP、PA,并直接寫出四邊形AQCP的周長;
(2)在圖2中畫出一個以線段AC為對角線、面積為6的矩形ABCD,且點B和點D均在小正方形的頂點上.
查看答案和解析>>
湖北省互聯(lián)網違法和不良信息舉報平臺 | 網上有害信息舉報專區(qū) | 電信詐騙舉報專區(qū) | 涉歷史虛無主義有害信息舉報專區(qū) | 涉企侵權舉報專區(qū)
違法和不良信息舉報電話:027-86699610 舉報郵箱:58377363@163.com