如圖,PA切⊙O于A點,C是弧AB上任意一點,∠PAB=58°,則∠C的度數(shù)是    度.
【答案】分析:若要利用弦切角的度數(shù),需構(gòu)造圓周角.在優(yōu)弧AB上任取一點D,連接AD、BD;根據(jù)弦切角定理,易得∠D=∠PAC=58°;而四邊形ACBD正好是⊙O的內(nèi)接四邊形,根據(jù)圓內(nèi)接四邊形對角互補,可求出∠C的度數(shù).
解答:解:在優(yōu)弧AB上任意找一點D,連接AD、BD;
∵PA與⊙O相切,切點為A,
∴∠D=∠PAB=58°,
∵四邊形ACBD內(nèi)接于⊙O,
∴∠C+∠D=180°,即∠C=122°.
點評:此題綜合考查了弦切角定理和圓內(nèi)接四邊形的性質(zhì).
練習冊系列答案
相關習題

科目:初中數(shù)學 來源: 題型:

精英家教網(wǎng)如圖,PA切⊙O于點A,PO交⊙O于點B,若PA=6,BP=4,則⊙O的半徑為(  )
A、
5
4
B、
5
2
C、2
D、5

查看答案和解析>>

科目:初中數(shù)學 來源: 題型:

精英家教網(wǎng)如圖,PA切⊙O于點A,PBC是⊙O的割線,且PB=BC,如果PA=3
2
,那么BC的長為(  )
A、3
2
B、3
C、
3
D、2
3

查看答案和解析>>

科目:初中數(shù)學 來源: 題型:

8、如圖,PA切⊙O于點A,PBC是⊙O的割線且過圓心,PA=4,PB=2,則⊙O的半徑等于(  )

查看答案和解析>>

科目:初中數(shù)學 來源: 題型:

精英家教網(wǎng)如圖,PA切⊙O于點A,PB切⊙O于點B,如果∠APB=60°,⊙O半徑是3,則劣弧AB的長為(  )
A、
π
2
B、π
C、2π
D、4π

查看答案和解析>>

科目:初中數(shù)學 來源: 題型:

如圖:PA切⊙O于A,PB切⊙O于B,OP交⊙O于C,下列結(jié)論中錯誤的是(  )

查看答案和解析>>

同步練習冊答案