【題目】1)如圖1,在ABC中,ABAC,點(diǎn)DE分別在邊AB,AC上,且DEBC,若AD2,AE,則的值是   

2)如圖2,在(1)的條件下,將ADE繞點(diǎn)A逆時(shí)針?lè)较蛐D(zhuǎn)一定的角度,連接CEBD的值變化嗎?若變化,請(qǐng)說(shuō)明理由;若不變化,請(qǐng)求出不變的值;

3)如圖3,在四邊形ABCD中,ACBC于點(diǎn)C,∠BAC=∠ADCθ,且tanθ,當(dāng)CD6AD3時(shí),請(qǐng)直接寫出線段BD的長(zhǎng)度.

【答案】1;(2的值不變化,值為,理由見解析;(3

【解析】

1)由平行線分線段成比例定理即可得出答案;

2)證明ABD∽△ACE,得出

3)作AECDE,DMACM,DNBCN,則DMCNDNMC,由三角函數(shù)定義得出,,得出,求出AEADDEAE,得出CECDDE,由勾股定理得出AC,得出BCAC

,由面積法求出CNDM,得出BNBC+CN,由勾股定理得出AM,得出DNMCAM+AC,再由勾股定理即可得出答案.

1)∵DEBC,

故答案為:;

2的值不變化,值為;理由如下:

由(1)得:DEB,

∴△ADE∽△ABC,

由旋轉(zhuǎn)的性質(zhì)得:∠BAD=∠CAE,

∴△ABD∽△ACE

;

3)作AECDE,DMACMDNBCN,如圖3所示:

則四邊形DMCN是矩形,

DMCN,DNMC,

∵∠BAC=∠ADCθ,且tanθ,

,

,

AEAD×3DEAE,

CECDDE6,

AC

BCAC

∵△ACD的面積=AC×DMCD×AE,

CNDM,

BNBC+CNAM,

DNMCAM+AC

BD

練習(xí)冊(cè)系列答案
相關(guān)習(xí)題

科目:初中數(shù)學(xué) 來(lái)源: 題型:

【題目】如圖,小明到青城山游玩,乘坐纜車,當(dāng)?shù)巧嚼|車的吊箱經(jīng)過(guò)點(diǎn)A到達(dá)點(diǎn)B時(shí),它經(jīng)過(guò)了200 m,纜車行駛的路線與水平夾角∠α=16°,當(dāng)纜車?yán)^續(xù)由點(diǎn)B到達(dá)點(diǎn)D時(shí),它又走過(guò)了200 m,纜車由點(diǎn)B到點(diǎn)D的行駛路線與水平夾角∠β=42°,求纜車從點(diǎn)A到點(diǎn)D垂直上升的距離.(結(jié)果保留整數(shù))(參考數(shù)據(jù):sin16°≈0.27,cos16°≈0.77,sin42°≈0.66,cos42°≈0.74)

查看答案和解析>>

科目:初中數(shù)學(xué) 來(lái)源: 題型:

【題目】有四張背面完全相同的卡片,正面上分別標(biāo)有數(shù)字﹣2,﹣1,1,2.把這四張卡片背面朝上,隨機(jī)抽取一張,記下數(shù)字為m;放回?cái)噭,再隨機(jī)抽取一張卡片,記下數(shù)字為n,則ymx+n不經(jīng)過(guò)第三象限的概率為_____

查看答案和解析>>

科目:初中數(shù)學(xué) 來(lái)源: 題型:

【題目】為配合全市“禁止焚燒秸稈”工作,某學(xué)校舉行了“禁止焚燒秸稈,保護(hù)環(huán)境,從我做起”為主題的演講比賽. 賽后組委會(huì)整理參賽同學(xué)的成績(jī),并制作了如下不完整的頻數(shù)分布表和頻數(shù)分布直方圖,請(qǐng)根據(jù)圖表提供的信息,解答下列問(wèn)題:

分?jǐn)?shù)段

(分?jǐn)?shù)為x分)

頻數(shù)

百分比

60≤x70

8

20%

70≤x80

a

30%

80≤x90

16

b%

90≤x100

4

10%

1)表中的a b     ;

2)請(qǐng)補(bǔ)全頻數(shù)分布直方圖;

3)若用扇形統(tǒng)計(jì)圖來(lái)描述成績(jī)分布情況,則分?jǐn)?shù)段70x80對(duì)應(yīng)的圓心角的度數(shù)是 ;

4)競(jìng)賽成績(jī)不低于90分的4名同學(xué)中正好有2名男同學(xué),2名女同學(xué).學(xué)校從這4名同學(xué)中隨機(jī)抽取2名同學(xué)接受電視臺(tái)記者采訪,請(qǐng)用列表或畫樹狀圖的方法求正好抽到一名男同學(xué)和一名女同學(xué)的概率.

查看答案和解析>>

科目:初中數(shù)學(xué) 來(lái)源: 題型:

【題目】如圖(1),AB=CDAD=BC,OAC中點(diǎn),過(guò)O點(diǎn)的直線分別與AD、BC相交于點(diǎn)MN,那么∠1∠2有什么關(guān)系?請(qǐng)說(shuō)明理由;

若過(guò)O點(diǎn)的直線旋轉(zhuǎn)至圖(2)、(3)的情況,其余條件不變,那么圖(1)中的∠1∠2的關(guān)系成立嗎?請(qǐng)說(shuō)明理由.

查看答案和解析>>

科目:初中數(shù)學(xué) 來(lái)源: 題型:

【題目】某中學(xué)原計(jì)劃加工一批校服,現(xiàn)有甲、乙兩個(gè)工廠加工這批校服,已知甲工廠每天能加工這種校服16件,乙工廠每天加工這種校服24件,且單獨(dú)加工這批校服甲廠比乙廠要多用20

1)求這批校服共有多少件?

2)為了盡快完成這批校服,若先由甲、乙兩工廠按原速度合作一段時(shí)間后,甲工廠停工,而乙工廠每天的速度提高25%,乙工廠單獨(dú)完成剩下的部分,且乙工廠全部工作時(shí)間是甲工廠工作時(shí)間的2倍還多4天,求乙工廠加工多少天

查看答案和解析>>

科目:初中數(shù)學(xué) 來(lái)源: 題型:

【題目】某商品現(xiàn)在的售價(jià)為每件60元,每星期可賣出300. 市場(chǎng)調(diào)查反映:如調(diào)整價(jià)格,每降價(jià)1元,每星期可多賣出20. 已知商品的進(jìn)價(jià)為每件40元,如何定價(jià)才能使利潤(rùn)最大?這個(gè)最大利潤(rùn)是多少?

查看答案和解析>>

科目:初中數(shù)學(xué) 來(lái)源: 題型:

【題目】已知關(guān)于x的一元二次方程x2+2m+1x+m220

1)若該方程有兩個(gè)實(shí)數(shù)根,求m的最小整數(shù)值;

2)若方程的兩個(gè)實(shí)數(shù)根為x1,x2,且(x1x22+m221,求m的值.

查看答案和解析>>

科目:初中數(shù)學(xué) 來(lái)源: 題型:

【題目】某游客乘坐金碧皇宮號(hào)游船在長(zhǎng)江和嘉陵江的交匯處A點(diǎn),測(cè)得來(lái)福土最高樓頂點(diǎn)F的仰角為45°,此時(shí)他頭項(xiàng)正上方146米的點(diǎn)B處有架航拍無(wú)人機(jī)測(cè)得來(lái)福士最高樓頂點(diǎn)F的仰角為31°,游船朝碼頭方向行駛120米到達(dá)碼頭C,沿坡度i12的斜坡CD走到點(diǎn)D,再向前走160米到達(dá)來(lái)福士樓底E,則來(lái)福士最高樓EF的高度約為( 。ńY(jié)果精確到0.1,參考數(shù)據(jù):sin31°≈0.52,cos31°≈0.87,tan31°≈0.60

A.301.3B.322.5C.350.2D.418.5

查看答案和解析>>

同步練習(xí)冊(cè)答案