【題目】如圖1,有長為22m的籬笆,一面利用墻(墻的最大可用長度為14m),圍成中間隔有一道籬笆的長方形花圃,設(shè)花圃的寬ABxm,面積為Sm2,

(1)請你用含x的代數(shù)式表示花圃面積S,并確定x的取值范圍

(2)如圖2,為了方便出入,在建造籬笆花圃時,在BC上用其他材料造了寬為1m的兩個小門,此時花圃的面積剛好為45m2,求此時花圃的長和寬.

【答案】1,x的取值范圍為;(2)長為9米,寬為5.

【解析】

1)用x表示出BC,再根據(jù)矩形面積公式得到面積表達式,根據(jù)BC大于0且小于14可得出x的取值范圍;

2)設(shè)花圃的寬為a米,然后用a表示出BC的長度,根據(jù)面積建立方程求解.

解:(1)∵籬笆長22m,花圃的寬ABxm,

BC=22-3x

0BC14,

解得

故答案為:,x的取值范圍為.

2)設(shè)花圃的寬AB米,則BC=米,

由題意得,

解得,

時,BC=24-9=1514,不符合題意,舍去;

時,BC=24-15=914,符合題意.

答:花圃的長為9米,寬為5.

練習冊系列答案
相關(guān)習題

科目:初中數(shù)學 來源: 題型:

【題目】如圖,已知在△ABC中,PAB上一點,連接CP,以下條件中不能判定△ACP∽△ABC的是(  )

A. B. C. D.

查看答案和解析>>

科目:初中數(shù)學 來源: 題型:

【題目】如圖,在RtABC中,∠C=90°,以AC為直徑作⊙O,交ABD,過點OOEAB,交BCE.

(1)求證:ED為⊙O的切線;

(2)如果⊙O的半徑為,ED=2,延長EO交⊙OF,連接DF、AF,求ADF的面積.

【答案】(1)證明見解析;(2)

【解析】試題分析:(1)首先連接OD,由OEAB,根據(jù)平行線與等腰三角形的性質(zhì),易證得 即可得,則可證得的切線;
(2)連接CD,根據(jù)直徑所對的圓周角是直角,即可得 利用勾股定理即可求得的長,又由OEAB,證得根據(jù)相似三角形的對應邊成比例,即可求得的長,然后利用三角函數(shù)的知識,求得的長,然后利用SADF=S梯形ABEF-S梯形DBEF求得答案.

試題解析:(1)證明:連接OD

OEAB,

∴∠COE=CAD,EOD=ODA,

OA=OD,

∴∠OAD=ODA,

∴∠COE=DOE,

在△COE和△DOE中,

∴△COE≌△DOE(SAS),

EDOD,

ED的切線;

(2)連接CD,交OEM,

RtODE中,

OD=32,DE=2,

OEAB

∴△COE∽△CAB,

AB=5,

AC是直徑,

EFAB

SADF=S梯形ABEFS梯形DBEF

∴△ADF的面積為

型】解答
結(jié)束】
25

【題目】【題目】已知,拋物線y=ax2+ax+b(a≠0)與直線y=2x+m有一個公共點M(1,0),且a<b.

(1)求ba的關(guān)系式和拋物線的頂點D坐標(用a的代數(shù)式表示);

(2)直線與拋物線的另外一個交點記為N,求DMN的面積與a的關(guān)系式;

(3)a=﹣1時,直線y=﹣2x與拋物線在第二象限交于點G,點G、H關(guān)于原點對稱,現(xiàn)將線段GH沿y軸向上平移t個單位(t>0),若線段GH與拋物線有兩個不同的公共點,試求t的取值范圍.

查看答案和解析>>

科目:初中數(shù)學 來源: 題型:

【題目】如圖,拋物線y=﹣x2+x+2與x軸交于點A,B,與y軸交于點C.

(1)試求A,B,C的坐標;

(2)將ABC繞AB中點M旋轉(zhuǎn)180°,得到BAD.3

求點D的坐標;

判斷四邊形ADBC的形狀,并說明理由;

(3)在該拋物線對稱軸上是否存在點P,使BMP與BAD相似?若存在,請直接寫出所有滿足條件的P點的坐標;若不存在,請說明理由.

查看答案和解析>>

科目:初中數(shù)學 來源: 題型:

【題目】如圖,△OAB中,∠ABO90°,點A位于第一象限,點O為坐標原點,點Bx軸正半軸上,若雙曲線yx0)與△OAB的邊AO、AB分別交于點C、D,點CAO的中點,連接OD、CD.若SOBD3,則SOCD為( 。

A.3B.4C.D.6

查看答案和解析>>

科目:初中數(shù)學 來源: 題型:

【題目】如圖,在平面直角坐標系中,平行四邊形ABCD中頂點A坐標(0,6),頂點B坐標(-2,0),頂點C坐標(8,0),點E為平行四邊形ABCD的對角線的交點,求過點E且到點C的距離最大的直線解析式____.

查看答案和解析>>

科目:初中數(shù)學 來源: 題型:

【題目】已知一個口袋中裝有六個完全相同的小球,小球上分別標有1,2,5,7,8,13六個數(shù),攪勻后一次從中摸出一個小球,將小球上的數(shù)記為m,則使得一次函數(shù)y=(﹣m+1x+11m經(jīng)過一、二、四象限且關(guān)于x的分式方程3x+的解為整數(shù)的概率是( 。

A.B.C.D.

查看答案和解析>>

科目:初中數(shù)學 來源: 題型:

【題目】關(guān)于x的一元二次方程x2+2k+1x+k2+1=0有兩個不等實根x1、x2

1)求實數(shù)k的取值范圍

2)若方程兩實根x1x2滿足x1+x2=﹣x1x2,k的值

查看答案和解析>>

科目:初中數(shù)學 來源: 題型:

【題目】已知在半徑為3的⊙O中,弦AB=3,弦AC=3,則∠BAC的度數(shù)為________.

查看答案和解析>>

同步練習冊答案