如圖,已知AB是⊙O的直徑,⊙O的切線PA與弦BC的延長(zhǎng)線相交于點(diǎn)P,∠PBA的平分線交PA于點(diǎn)D,∠ABC=30°.
(1)求∠ADB的度數(shù);
(2)若PA=2cm,求BC的長(zhǎng).

【答案】分析:(1)根據(jù)切線的性質(zhì)知:∠PAB=90°,再根據(jù)∠PBA的平分線交PA于點(diǎn)D,∠ABC的度數(shù),可得:∠ABD的度數(shù),從而可將∠ADB的度數(shù)求出;
(2)在Rt△APC中,根據(jù)PA的長(zhǎng)和∠PAC的度數(shù),可將PA的長(zhǎng)求出,在Rt△ABP中,根據(jù)三角函數(shù)可將PB的長(zhǎng)求出,從而可將BC的長(zhǎng)求出.
解答:解:(1)∵PA是⊙O的切線,AB是⊙O的直徑,
∴∠PAB=90°,
∵BD平分∠PBA,
∴∠ABD=∠PBA=×30°=15°,
∴∠ADB=90°-∠ABD=75°;

(2)∵AB是⊙O的直徑,
∴∠PCA=∠ACB=90°;
在Rt△ABC中,∠ABC=30°,
∴∠BAC=60°,
∴∠PAC=∠PAB-∠BAC=30°;
在Rt△PAC中,
∵PA=2,∠PCA=90°,
∴PC=PA=1;
在Rt△ABP中,
∵∠ABP=30°,∠PAB=90°,
∴PB=2AP=2×2=4,
∴BC=PB-PC=3(cm).
點(diǎn)評(píng):本題考查了圓的切線性質(zhì),及解直角三角形的知識(shí).運(yùn)用切線的性質(zhì)來進(jìn)行計(jì)算或論證,常通作輔助線連接圓心和切點(diǎn),利用垂直構(gòu)造直角三角形解決有關(guān)問題.
練習(xí)冊(cè)系列答案
相關(guān)習(xí)題

科目:初中數(shù)學(xué) 來源: 題型:

精英家教網(wǎng)如圖,已知AB是⊙O的直徑,AC是弦,D為AB延長(zhǎng)線上一點(diǎn),DC=AC,∠ACD=120°,BD=10.
(1)判斷DC是否為⊙O的切線,并說明理由;
(2)求扇形BOC的面積.

查看答案和解析>>

科目:初中數(shù)學(xué) 來源: 題型:

精英家教網(wǎng)如圖,已知AB是⊙O的直徑,C是⊙O上一點(diǎn),∠BAC的平分線交⊙O于點(diǎn)D,交⊙O的切線BE于點(diǎn)E,過點(diǎn)D作DF⊥AC,交AC的延長(zhǎng)線于點(diǎn)F.
(1)求證:DF是⊙O的切線;
(2)若DF=3,DE=2
①求
BEAD
值;
②求圖中陰影部分的面積.

查看答案和解析>>

科目:初中數(shù)學(xué) 來源: 題型:

(2013•泰安)如圖,已知AB是⊙O的直徑,AD切⊙O于點(diǎn)A,點(diǎn)C是
EB
的中點(diǎn),則下列結(jié)論不成立的是( 。

查看答案和解析>>

科目:初中數(shù)學(xué) 來源: 題型:

如圖,已知AB是⊙O的直徑,P為⊙O外一點(diǎn),且OP∥BC,∠P=∠BAC.
求證:PA為⊙O的切線.

查看答案和解析>>

科目:初中數(shù)學(xué) 來源: 題型:

如圖,已知AB是圓O的直徑,∠DAB的平分線AC交圓O與點(diǎn)C,作CD⊥AD,垂足為點(diǎn)D,直線CD與AB的延長(zhǎng)線交于點(diǎn)E.
(1)求證:直線CD為圓O的切線.
(2)當(dāng)AB=2BE,DE=2
3
時(shí),求AD的長(zhǎng).

查看答案和解析>>

同步練習(xí)冊(cè)答案