如圖,四邊形ABCD是平行四邊形,E,F(xiàn)為對(duì)角線AC上兩點(diǎn),連接ED,EB,F(xiàn)D,F(xiàn)B.給出以下結(jié)論:①BE∥DF;②BE=DF;③AE=CF.請(qǐng)你從中選取一個(gè)條件,使∠1=∠2成立,并給出證明.
解:方法一:
補(bǔ)充條件①BE∥DF.
證明:如圖,∵BE∥DF,
∴∠BEC=∠DFA,
∴∠BEA=∠DFC,
∵四邊形ABCD是平行四邊形,
∴AB=CD,AB∥CD,
∴∠BAE=∠DCF,
在△ABE與△CDF中,
,
∴△ABE≌△CDF(ASA),
∴BE=DF,
∴四邊形BFDE是平行四邊形,
∴ED∥BF,
∴∠1=∠2;
方法二:
補(bǔ)充條件③AE=CF.
證明:∵AE=CF,∴AF=CE.
∵四邊形ABCD是平行四邊形,
∴AB=CD,AB∥CD,
∴∠BAF=∠DCE,
在△ABF與△CDE中,
∴△ABF≌△CDE(SAS),
∴∠1=∠2.
年級(jí) | 高中課程 | 年級(jí) | 初中課程 |
高一 | 高一免費(fèi)課程推薦! | 初一 | 初一免費(fèi)課程推薦! |
高二 | 高二免費(fèi)課程推薦! | 初二 | 初二免費(fèi)課程推薦! |
高三 | 高三免費(fèi)課程推薦! | 初三 | 初三免費(fèi)課程推薦! |
科目:初中數(shù)學(xué) 來源: 題型:
2013年秋季以來,我國(guó)北方地區(qū)持續(xù)無降雨,導(dǎo)致了嚴(yán)重的旱情。蕭山區(qū)某初中學(xué)生會(huì)自發(fā)組織了“保護(hù)水資源從我做起”的活動(dòng). 同學(xué)們采取問卷調(diào)查的方式,隨機(jī)調(diào)查了本校150名同學(xué)家庭月人均用水量和節(jié)水措施情況.以下是根據(jù)調(diào)查結(jié)果做出的統(tǒng)計(jì)圖的一部分。請(qǐng)根據(jù)以上信息解答下列問題:
(1)補(bǔ)全圖1和圖2;
(2)如果全校學(xué)生家庭總?cè)藬?shù)為3000人,根據(jù)這150名同學(xué)家庭月人均用水量,估計(jì)全校學(xué)生家庭月用水總量多少噸?
(第19題)
查看答案和解析>>
科目:初中數(shù)學(xué) 來源: 題型:
如圖是一個(gè)橫斷面為拋物線形狀的拱橋,當(dāng)水面寬4米時(shí),拱頂(拱橋洞的最高點(diǎn))離水面2米,水面下降1米時(shí),水面的寬度為 米.
查看答案和解析>>
科目:初中數(shù)學(xué) 來源: 題型:
如圖①,△ABC與△DEF是將△ACF沿過A點(diǎn)的某條直線剪開得到的(AB,DE是同一條剪切線).平移△DEF使頂點(diǎn)E與AC的中點(diǎn)重合,再繞點(diǎn)E旋轉(zhuǎn)△DEF,使ED,EF分別與AB,BC交于M,N兩點(diǎn).
(1)如圖②,△ABC中,若AB=BC,且∠ABC=90°,則線段EM與EN有何數(shù)量關(guān)系?請(qǐng)直接寫出結(jié)論;
(2)如圖③,△ABC中,若AB=BC,那么(1)中的結(jié)論是否還成立?若成立,請(qǐng)給出證明:若不成立,請(qǐng)說明理由;
(3)如圖④,△ABC中,若AB:BC=m:n,探索線段EM與EN的數(shù)量關(guān)系,并證明你的結(jié)論.
查看答案和解析>>
科目:初中數(shù)學(xué) 來源: 題型:
小錦和小麗購(gòu)買了價(jià)格分別相同的中性筆和筆芯,小錦買了20支筆和2盒筆芯,用了56元;小麗買了2支筆和3盒筆芯,僅用了28元.設(shè)每支中性筆x元和每盒筆芯y元,根據(jù)題意列方程組正確的是( )
| A. |
| B. |
|
| C. |
| D. |
|
查看答案和解析>>
科目:初中數(shù)學(xué) 來源: 題型:
如圖1,AB是⊙O的直徑,點(diǎn)C在AB的延長(zhǎng)線上,AB=4,BC=2,P是⊙O上半部分的一個(gè)動(dòng)點(diǎn),連接OP,CP.
(1)求△OPC的最大面積;
(2)求∠OCP的最大度數(shù);
(3)如圖2,延長(zhǎng)PO交⊙O于點(diǎn)D,連接DB,當(dāng)CP=DB時(shí),求證:CP是⊙O的切線.
查看答案和解析>>
百度致信 - 練習(xí)冊(cè)列表 - 試題列表
湖北省互聯(lián)網(wǎng)違法和不良信息舉報(bào)平臺(tái) | 網(wǎng)上有害信息舉報(bào)專區(qū) | 電信詐騙舉報(bào)專區(qū) | 涉歷史虛無主義有害信息舉報(bào)專區(qū) | 涉企侵權(quán)舉報(bào)專區(qū)
違法和不良信息舉報(bào)電話:027-86699610 舉報(bào)郵箱:58377363@163.com