如圖,已知點A、B在雙曲線y=(x>0)上,AC⊥x軸于C,BD⊥y軸于點D,AC與BD交于點P,P是AC的中點.
(1)試判斷四邊形ABCD的形狀,并說明理由.
(2)若△ABP的面積為3,求該雙曲線的解析式.

【答案】分析:(1)通過全等三角形Rt△ADP≌Rt△CDP可以判定AD=CD;同理求得AB=BC、AD=AB;所以AB=BC=AD=CD,從而推知四邊形ABCD是菱形;
(2)由△ABP的面積為3,知BP•AP=6.根據(jù)反比例函數(shù) y=kx中k的幾何意義,知本題k=OC•AC,由反比例函數(shù)的性質,結合已知條件P是AC的中點,得出OC=BP,AC=2AP,進而求出k的值.
解答:解:(1)菱形.
理由:連接AD、CD、BC;
∵AC⊥x軸于C,BD⊥y軸于點D,
∴AC⊥BD;
設A(m,n),則mn=k,P(m,n),
B點縱坐標為n,橫坐標為==2m,
∴PD=PB,
又AP=PC,
∴四邊形ABCD是菱形;

(2)∵△ABP的面積為 •BP•AP=3,
∴BP•AP=6,
∵P是AC的中點,
∴A點的縱坐標是B點縱坐標的2倍,
又∵點A、B都在雙曲線y=(x>0)上,
∴B點的橫坐標是A點橫坐標的2倍,
∴OC=DP=BP,
∴k=OC•AC=BP•2AP=12.
∴該雙曲線的解析式是:
點評:主要考查了反比例函數(shù) y=中k的幾何意義,即過雙曲線上任意一點引x軸、y軸垂線,所得矩形面積為|k|,是經(jīng)?疾榈囊粋知識點;這里體現(xiàn)了數(shù)形結合的思想,做此類題一定要正確理解k的幾何意義.
練習冊系列答案
相關習題

科目:初中數(shù)學 來源: 題型:

精英家教網(wǎng)如圖,已知點B、D在直線AE上,AC∥DF,∠C=∠F,AD=BE,試說明BC∥EF的理由.

查看答案和解析>>

科目:初中數(shù)學 來源: 題型:

如圖,已知點C、D在以O為圓心,AB為直徑的半圓上,且OC⊥BD于點M,CF⊥AB于點F交精英家教網(wǎng)BD于點E,BD=8,CM=2.
(1)求⊙O的半徑;
(2)求證:CE=BE.

查看答案和解析>>

科目:初中數(shù)學 來源: 題型:

(2013•建鄴區(qū)一模)如圖,已知點E,C在線段BF上,BE=EC=CF,AB∥DE,∠ACB=∠F.
(1)求證:△ABC≌△DEF;
(2)試判斷:四邊形AECD的形狀,并證明你的結論.

查看答案和解析>>

科目:初中數(shù)學 來源: 題型:

如圖,已知點A,B分別在x軸和y軸上,且OA=OB=3
2
,點C的坐標是C(
7
2
2
,
7
2
2
)AB與OC相交于點G.點P從O出發(fā)以每秒1個單位的速度從O運動到C,過P作直線EF∥AB分別交OA,OB或BC,AC于E,F(xiàn).解答下列問題:
(1)直接寫出點G的坐標和直線AB的解析式.
(2)若點P運動的時間為t,直線EF在四邊形OACB內掃過的面積為s,請求出s與t的函數(shù)關系式;并求出當t為何值時,直線EF平分四邊形OACB的面積.
(3)設線段OC的中點為Q,P運動的時間為t,求當t為何值時,△EFQ為直角三角形.

查看答案和解析>>

科目:初中數(shù)學 來源: 題型:

如圖,已知點D、F在線段BC上,點E在線段BA的延長線上,EF與AC交于點G,且∠EFC=∠ADC,∠AGE=∠E.請說出AD平分∠BAC的理由.

查看答案和解析>>

同步練習冊答案