精英家教網 > 初中數學 > 題目詳情

【題目】已知四邊形ABCD是菱形,AB=4,ABC=60°,EAF的兩邊分別與射線CB,DC相交于點E,F,且EAF=60°

1如圖1,當點E是線段CB的中點時,直接寫出線段AE,EF,AF之間的數量關系;

2如圖2,當點E是線段CB上任意一點時點E不與B、C重合,求證:BE=CF;

3如圖3,當點E在線段CB的延長線上,且EAB=15°時,求點F到BC的距離.

【答案】1AE=EF=AF;2證明過程見解析;33-

【解析】

試題分析:1結論AE=EF=AF.只要證明AE=AF即可證明AEF是等邊三角形;2欲證明BE=CF,只要證明BAE≌△CAF即可;3過點A作AGBC于點G,過點F作FHEC于點H,根據FH=CFcos30°,因為CF=BE,只要求出BE即可解決問題.

試題解析:1結論AE=EF=AF.

理由:如圖1中,連接AC, 四邊形ABCD是菱形,B=60° AB=BC=CD=AD,B=D=60°

∴△ABC,ADC是等邊三角形, ∴∠BAC=DAC=60° BE=EC, ∴∠BAE=CAE=30°,AEBC,

∵∠EAF=60°, ∴∠CAF=DAF=30° AFCD, AE=AF菱形的高相等,

∴△AEF是等邊三角形, AE=EF=AF.

2如圖2中,∵∠BAC=EAF=60° ∴∠BAE=CAE,

BAE和CAF中,, ∴△BAE≌△CAF, BE=CF.

3過點A作AGBC于點G,過點F作FHEC于點H, ∵∠EAB=15°ABC=60°, ∴∠AEB=45°,

在RTAGB中,∵∠ABC=60°AB=4, BG=2,AG=2,在RTAEG中,∵∠AEG=EAG=45°,

AG=GE=2, EB=EGBG=22, ∵△AEB≌△AFC,

AE=AF,EB=CF=22,AEB=AFC=45°, ∵∠EAF=60°,AE=AF, ∴△AEF是等邊三角形,

∴∠AEF=AFE=60° ∵∠AEB=45°,AEF=60° ∴∠CEF=AEF﹣∠AEB=15°,

在RTEFH中,CEF=15°, ∴∠EFH=75°, ∵∠AFE=60°, ∴∠AFH=EFH﹣∠AFE=15°

∵∠AFC=45°,CFH=AFC﹣∠AFH=30°, 在RTCHF中,∵∠CFH=30°,CF=22,

FH=CFcos30°=22=3 點F到BC的距離為3

練習冊系列答案
相關習題

科目:初中數學 來源: 題型:

【題目】2016年泉州市初中體育中考中,隨意抽取某校5位同學一分鐘跳繩的次數分別為158160,154,158,170則由這組數據得到的結論錯誤的是( 。

A. 平均數為160 B. 中位數為158 C. 眾數為158 D. 方差為20.3

查看答案和解析>>

科目:初中數學 來源: 題型:

【題目】如圖:在數軸上 A 點表示數 aB 點示數 b,C 點表示數 c,b 是最大的負整數,且 a、b 滿足|a+ 3|+c62=0

1a= b= ,c= ;

2)若將數軸折疊,使得 A點與B 點重合,則點 C與數 表示的點重合;

3)點 A、B、C開始在數軸上運動,若點 A以每秒 2個單位長度的速度向左運動,同時,點 B C分別以每秒1個單位長度和 4個單位長度的速度向右運動,假設 t 秒鐘過后,若點 A與點 B之間的距離表示為 AB,點 A與點 C之間的距離表示為 AC,點 B與點 C之間的距離表示為 BC.則 AB= AC= ,BC= .(用 t的代數式表示)

4)請問:2BC+AB - AC的值是否隨著時間 t 的變化而改變?若變化,請說明理由;若不變,請求其值.

查看答案和解析>>

科目:初中數學 來源: 題型:

【題目】已知:如圖一,拋物線y=ax2+bx+cx軸正半軸交于A、B兩點,與y軸交于點C,直線y=x-2經過AC兩點,且AB=2

1)求拋物線的解析式;

2)若直線DE平行于x軸并從C點開始以每秒1個單位的速度沿y軸正方向平移,且分別交y軸、線段BC于點E,D,同時動點P從點B出發(fā),沿BO方向以每秒2個單位速度運動,(如圖2);當點P運動到原點O時,直線DE與點P都停止運動,連DP,若點P運動時間為t秒;設s=,當t為何值時,s有最小值,并求出最小值.

3)在(2)的條件下,是否存在t的值,使以P、B、D為頂點的三角形與△ABC相似;若存在,求t的值;若不存在,請說明理由.

查看答案和解析>>

科目:初中數學 來源: 題型:

【題目】已知函數y=﹣x+4,回答下列問題:

(1)請在右圖的直角坐標系中畫出函數y=﹣x+4圖象

(2)y的值隨x值的增大而________;

(3)當y=2時,x的值為_________;

(4)當y0時,x的取值范圍是_______

查看答案和解析>>

科目:初中數學 來源: 題型:

【題目】如圖:在數軸上A點表示數aB點示數b,C點表示數cb是最小的正整數,且ab滿足 +(c-7)2=0.

(1) a= ,b= ,c=

(2) 若將數軸折疊,使得A點與C點重合,則點B與數 表示的點重合.

(3) A,BC開始在數軸上運動,若點A以每秒1個單位長度的速度向左運動,同時,點B和點C分別以每秒2個單位長度和4個單位長度的速度向右運動,假設t秒鐘過后,若點A與點B之間的距離表示為AB,點A與點C之間的距離表示為AC,點B與點C之間的距離表示為BC.則AB= ,AC= BC= .(用含t的代數式表示)

(4) 請問:3BC-2AB的值是否隨著時間t的變化而改變? 若變化,請說明理由;若不變,請求其值.

查看答案和解析>>

科目:初中數學 來源: 題型:

【題目】檢修小組從A地出發(fā),在東西路上檢修線路,若規(guī)定向東行駛的路程為正數,向西行駛的路程為負數,一天中行駛記錄(單位;千米)如下:

1)收工時檢修小組在A地的哪側,距A地多遠?

2)若每千米耗油0.3升,從出發(fā)到收工共耗油多少升?

查看答案和解析>>

科目:初中數學 來源: 題型:

【題目】某公司準備投資開發(fā)A、B兩種新產品,通過市場調研發(fā)現如果單獨投資A種產品,則所獲利潤yA(萬元)與投資金額x(萬元)之間滿足正比例函數關系yA=kx;如果單獨投資B種產品,則所獲利潤yB(萬元)與投資金額x(萬元)之間滿足二次函數關系yB=ax2+bx.根據公司信息部的報告,yA、yB(萬元)與投資金額x(萬元)的部分對應值(如下表)

(1)求正比例函數和二次函數的解析式;

(2)如果公司準備投資20萬元同時開發(fā)A、B兩種新產品,請你設計一個能獲得最大利潤的投資方案并求出按此方案能獲得的最大利潤是多少萬元?

查看答案和解析>>

科目:初中數學 來源: 題型:

【題目】隨著移動計算技術和無線網絡的快速發(fā)展,移動學習方式越來越引起人們的關注,某校計劃將這種學習方式應用到教育學中,從全校1500名學生中隨機抽取了部分學生,對其家庭中擁有的移動設備的情況進行調查,并繪制出如下的統(tǒng)計圖①和圖②,根據相關信息,解答下列問題:

(1)本次接受隨機抽樣調查的學生人數為   ,圖①中m的值為   

(2)求本次調查獲取的樣本數據的眾數、中位數和平均數;

(3)根據樣本數據,估計該校1500名學生家庭中擁有3臺移動設備的學生人數.

查看答案和解析>>

同步練習冊答案