商場銷售甲、乙兩種商品,它們的進(jìn)價(jià)和售價(jià)如表,
進(jìn)價(jià)(元)售價(jià)(元)
1520
3543
(1)若該商場購進(jìn)甲、乙兩種商品共100件,恰好用去2700元,求購進(jìn)甲、乙兩種商品各多少件?
(2)該商場為使銷售甲、乙兩種商品共100件的總利潤(利潤=售價(jià)-進(jìn)價(jià))不少于750元,且不超過760元,請(qǐng)你幫助該商場設(shè)計(jì)相應(yīng)的進(jìn)貨方案.
考點(diǎn):一元一次不等式組的應(yīng)用,二元一次方程組的應(yīng)用
專題:
分析:(1)首先設(shè)出未知數(shù),根據(jù)題意可得兩個(gè)等量關(guān)系:①甲、乙兩種商品共100件;②進(jìn)價(jià)用去2700元;可以列出方程組,解方程組即可;
(2)設(shè)該商場購進(jìn)甲種商品a件,則購進(jìn)乙種商品(100-a)件,根據(jù)題意得:750≤甲商品的利潤×數(shù)量+乙商品的利潤×數(shù)量≤760,解不等式組即可;
解答:解:(1)設(shè)該商場購進(jìn)甲種商品x件,根據(jù)題意可得:
15x+35(100-x)=2700,
解得:x=40,
乙種商品:100-40=60(件),
答:該商場購進(jìn)甲種商品40件,乙種商品60件.

(2)設(shè)該商場購進(jìn)甲種商品a件,則購進(jìn)乙種商品(100-a)件,根據(jù)題意得:
(20-15)a+(43-35)(100-a)≥750
(20-15)a+(43-35)(100-a)≤760
,
解得
40
3
≤a≤
50
3
,
∵a是正整數(shù),
∴a=14,15,16,
∴進(jìn)貨方案有三種:
方案一:購進(jìn)甲種商品14件,購進(jìn)乙種商品86件;
方案二:購進(jìn)甲種商品15件,購進(jìn)乙種商品85件;
方案三:購進(jìn)甲種商品16件,購進(jìn)乙種商品84件.
點(diǎn)評(píng):此題主要考查了一元一次不等式的應(yīng)用以及選擇最佳方案問題等知識(shí),此題是中考中考查重點(diǎn)內(nèi)容應(yīng)重點(diǎn)掌握.
練習(xí)冊(cè)系列答案
相關(guān)習(xí)題

科目:初中數(shù)學(xué) 來源: 題型:

27
8
化簡成最簡二次根式為
 

查看答案和解析>>

科目:初中數(shù)學(xué) 來源: 題型:

a
、
a2b
、
1+x2
3
中是二次根式的個(gè)數(shù)有
 
個(gè).

查看答案和解析>>

科目:初中數(shù)學(xué) 來源: 題型:

如圖,在△ABC中,AB=AC,∠A=36°,AB的垂直平分線OD交AB于點(diǎn)O,交AC于點(diǎn)D,連接BD,則下列結(jié)論:①BD平分∠ABC;②AD=BD=BC;③△BCD的周長等于AB+BC;④∠C=2∠A;⑤S△BCD=S△ABD,正確的個(gè)數(shù)( 。
A、2個(gè)B、3個(gè)C、4個(gè)D、5個(gè)

查看答案和解析>>

科目:初中數(shù)學(xué) 來源: 題型:

下列說法正確的是( 。
A、若x2=2,則x=
2
B、
100
的值是±10
C、-0.1是-0.001的立方根
D、
327
的結(jié)果是±3

查看答案和解析>>

科目:初中數(shù)學(xué) 來源: 題型:

如果等腰三角形的一腰上的高與另一腰的夾角為30°,則該等腰三角形頂角的度數(shù)是( 。
A、60°B、120°
C、60°或120°D、90°

查看答案和解析>>

科目:初中數(shù)學(xué) 來源: 題型:

已知m是方程x2-x-2=0的一個(gè)根,求代數(shù)式m2-m的值.

查看答案和解析>>

科目:初中數(shù)學(xué) 來源: 題型:

某攝影興趣小組的學(xué)生,將自己拍攝的照片向本組其他成員各贈(zèng)送一張,全組共互贈(zèng)了72張.若全組共有x名學(xué)生,則根據(jù)題意列出的方程是
 

查看答案和解析>>

科目:初中數(shù)學(xué) 來源: 題型:

直徑為8的圓內(nèi)有一點(diǎn)M到圓心O的距離是3,則過點(diǎn)M的弦中,長度為整數(shù)的條數(shù)為( 。
A、3B、4C、5D、6

查看答案和解析>>

同步練習(xí)冊(cè)答案