如圖,已知拋物線,y=ax2+bx+c經(jīng)過A(2,0).B(3.-3)及原點(diǎn)O.頂點(diǎn)為C.
(l)求拋物線的解析式及頂點(diǎn)C的坐標(biāo);
(2)點(diǎn)D在拋物線上,點(diǎn)E在拋物線的對稱軸上,且以A、O、D、E為頂點(diǎn)的四邊形是平行四邊形,請直接寫出點(diǎn)D的坐標(biāo);
(3)P是拋物線上第三象限內(nèi)的動點(diǎn),過點(diǎn)P作PM⊥x軸,垂足為M,是否存在點(diǎn)P,使得以P、M、A為頂點(diǎn)的三角形與△BOC相似?若存在,求出點(diǎn)P的坐標(biāo);若不存在,清說明理由.

解:(1)∵拋物線過原點(diǎn)O,
∴可設(shè)拋物線的解析式為y=ax2+bx,
將A(2,0),B(3,-3)代入,得
,
解得,
故拋物線的解析式為:y=-x2+2x,
則y=-x2+2x=-(x2-2x)=-(x-1) 2+1,
故C點(diǎn)坐標(biāo)為:(1,1);

(2)如圖1,①當(dāng)AO為邊時,
∵以A、O、D、E為頂點(diǎn)的四邊形是平行四邊形.
∴DE∥AO,且DE=AO=2.
∵點(diǎn)E在對稱軸x=1上,
∴點(diǎn)D的橫坐標(biāo)為-1或3.
即符合條件的點(diǎn)D有兩個,分別記為D1,D2
而當(dāng)x=-1時,y=-3當(dāng)x=3時,y=-3
則D1(-1,-3),D2(3,-3),
②當(dāng)AO為對角線時,則DE與AO互相平分.
又點(diǎn)E在對稱軸上,且線段AO的中點(diǎn)橫坐標(biāo)為1,
由對稱性知,符合條件的點(diǎn)D只有一個,即頂點(diǎn)C(1,1),
綜上所述,符合條件的點(diǎn)D共有三個,分別為(-1,-3),(3,-3),(1,1);

(3)存在,
如圖2,∵B(3,-3),C(1,1)根據(jù)勾股定理得:
BO2=18,CO2=2,BC2=20.
∴BO2+CO2=BC2
∴△BOC是以∠BOC為直角的直角三角形.
假設(shè)存在點(diǎn)P,使得以P、M、A為頂點(diǎn)的三角形與Rt△BOC相似.
設(shè)P(x,y),由題意知x<0,y<0且y=-x2+2x,
①若△AMP∽△BOC,

,
則3x2-5x-2=0,
解之得,x2=2(舍去).
當(dāng)時,,即點(diǎn)P(
②若△PMA∽△BOC,


則x2+x-6=0
解之得x1=-3,x2=2(舍去).
當(dāng)x=-3時,y=-15,即點(diǎn)P(-3,-15).
綜上所述,符合條件的點(diǎn)P有兩個,分別是P1),P2(-3,-15).
分析:(1)通過拋物線過原點(diǎn)O,可設(shè)拋物線的解析式為y=ax2+bx,再根據(jù)待定系數(shù)法就可以求出拋物線的解析式;
(2)①當(dāng)OA為邊時,根據(jù)E在x=1上,能求出D的橫坐標(biāo),根據(jù)平行四邊形性質(zhì)求出D的坐標(biāo)即可;
②OA為對角線時,根據(jù)平行四邊形的對角線互相平分,求出D和C重合,進(jìn)一步求出E的坐標(biāo);
(3)設(shè)P(x,y),由題意知x<0,y<0且y=-x2+2x,可得P(x,-x2+2x),根據(jù)勾股定理的逆定理求出直角三角形BOC,根據(jù)相似三角形的性質(zhì),得出比例式,代入求出即可.
點(diǎn)評:本題考查了二次函數(shù)的綜合,用待定系數(shù)法求二次函數(shù)的解析式、相似三角形的性質(zhì)、勾股定理的逆定理、平行四邊形的判定等知識點(diǎn)的應(yīng)用,此題綜合性比較強(qiáng),有一定的難度,對學(xué)生提出較高的要求.注意:不要漏解,分類討論思想的巧妙運(yùn)用.
練習(xí)冊系列答案
相關(guān)習(xí)題

科目:初中數(shù)學(xué) 來源: 題型:

如圖,已知拋物線與x軸交于A(-1,0)、B(4,0)兩點(diǎn),與y軸交于點(diǎn)精英家教網(wǎng)C(0,3).
(1)求拋物線的解析式;
(2)求直線BC的函數(shù)解析式;
(3)在拋物線上,是否存在一點(diǎn)P,使△PAB的面積等于△ABC的面積,若存在,求出點(diǎn)P的坐標(biāo),若不存在,請說明理由.
(4)點(diǎn)Q是直線BC上的一個動點(diǎn),若△QOB為等腰三角形,請寫出此時點(diǎn)Q的坐標(biāo).(可直接寫出結(jié)果)

查看答案和解析>>

科目:初中數(shù)學(xué) 來源: 題型:

如圖,已知拋物線y=ax2+bx+c(a≠0)的對稱軸為x=1,且拋物線經(jīng)過A(-1,0)精英家教網(wǎng)、C(0,-3)兩點(diǎn),與x軸交于另一點(diǎn)B.
(1)求這條拋物線所對應(yīng)的函數(shù)關(guān)系式;
(2)在拋物線的對稱軸x=1上求一點(diǎn)M,使點(diǎn)M到點(diǎn)A的距離與到點(diǎn)C的距離之和最小,并求出此時點(diǎn)M的坐標(biāo).

查看答案和解析>>

科目:初中數(shù)學(xué) 來源: 題型:

(2013•衡陽)如圖,已知拋物線經(jīng)過A(1,0),B(0,3)兩點(diǎn),對稱軸是x=-1.
(1)求拋物線對應(yīng)的函數(shù)關(guān)系式;
(2)動點(diǎn)Q從點(diǎn)O出發(fā),以每秒1個單位長度的速度在線段OA上運(yùn)動,同時動點(diǎn)M從O點(diǎn)出發(fā)以每秒3個單位長度的速度在線段OB上運(yùn)動,過點(diǎn)Q作x軸的垂線交線段AB于點(diǎn)N,交拋物線于點(diǎn)P,設(shè)運(yùn)動的時間為t秒.
①當(dāng)t為何值時,四邊形OMPQ為矩形;
②△AON能否為等腰三角形?若能,求出t的值;若不能,請說明理由.

查看答案和解析>>

科目:初中數(shù)學(xué) 來源: 題型:

如圖,已知拋物線y=ax2+bx+c(a≠0)的對稱軸為直線x=1,且拋物線經(jīng)過A(-1,0)、C(0,-3)兩點(diǎn),與x軸交于另一點(diǎn)B.
(1)求這條拋物線所對應(yīng)的函數(shù)關(guān)系式;
(2)點(diǎn)P是拋物線對稱軸上一點(diǎn),若△PAB∽△OBC,求點(diǎn)P的坐標(biāo).

查看答案和解析>>

科目:初中數(shù)學(xué) 來源: 題型:

如圖,已知拋物線y=ax2+bx+c的頂點(diǎn)是(-1,-4),且與x軸交于A、B(1,0)兩點(diǎn),交y軸于點(diǎn)C;
(1)求此拋物線的解析式;
(2)①當(dāng)x的取值范圍滿足條件
-2<x<0
-2<x<0
時,y<-3;
     ②若D(m,y1),E(2,y2)是拋物線上兩點(diǎn),且y1>y2,求實(shí)數(shù)m的取值范圍;
(3)直線x=t平行于y軸,分別交線段AC于點(diǎn)M、交拋物線于點(diǎn)N,求線段MN的長度的最大值;
(4)若以拋物線上的點(diǎn)P為圓心作圓與x軸相切時,正好也與y軸相切,求點(diǎn)P的坐標(biāo).

查看答案和解析>>

同步練習(xí)冊答案