(2010•泉州)如圖,兩同心圓的圓心為O,大圓的弦AB切小圓于P,兩圓的半徑分別為2和1,則弦長(zhǎng)AB=    ;若用陰影部分圍成一個(gè)圓錐,則該圓錐的底面半徑為    .(結(jié)果保留根號(hào)).
【答案】分析:利用垂徑定理根據(jù)勾股定理即可求得弦AB的長(zhǎng);利用相應(yīng)的三角函數(shù)可求得∠AOB的度數(shù),進(jìn)而可求優(yōu)弧AB的長(zhǎng)度,除以2π即為圓錐的底面半徑.
解答:解:連接OP,則OP⊥AB,AB=2AP,
∴AB=2AP=2×=2
∴sin∠AOP=,
∴∠AOP=60°,
∴∠AOB=2∠AOP=120°,
∴優(yōu)弧AB的長(zhǎng)為=π,
∴圓錐的底面半徑為π÷2π=
點(diǎn)評(píng):本題綜合考查了垂徑定理,勾股定理,相應(yīng)的三角函數(shù),圓錐的弧長(zhǎng)等于底面周長(zhǎng)等知識(shí)點(diǎn).
練習(xí)冊(cè)系列答案
相關(guān)習(xí)題

科目:初中數(shù)學(xué) 來源:2010年全國中考數(shù)學(xué)試題匯編《二次函數(shù)》(07)(解析版) 題型:解答題

(2010•泉州)如圖所示,已知拋物線的圖象與y軸相交于點(diǎn)B(0,1),點(diǎn)C(m,n)在該拋物線圖象上,且以BC為直徑的⊙M恰好經(jīng)過頂點(diǎn)A.
(1)求k的值;
(2)求點(diǎn)C的坐標(biāo);
(3)若點(diǎn)P的縱坐標(biāo)為t,且點(diǎn)P在該拋物線的對(duì)稱軸l上運(yùn)動(dòng),試探索:
①當(dāng)S1<S<S2時(shí),求t的取值范圍(其中:S為△PAB的面積,S1為△OAB的面積,S2為四邊形OACB的面積);
②當(dāng)t取何值時(shí),點(diǎn)P在⊙M上.(寫出t的值即可)

查看答案和解析>>

科目:初中數(shù)學(xué) 來源:2010年福建省泉州市中考數(shù)學(xué)試卷(解析版) 題型:解答題

(2010•泉州)如圖所示,已知拋物線的圖象與y軸相交于點(diǎn)B(0,1),點(diǎn)C(m,n)在該拋物線圖象上,且以BC為直徑的⊙M恰好經(jīng)過頂點(diǎn)A.
(1)求k的值;
(2)求點(diǎn)C的坐標(biāo);
(3)若點(diǎn)P的縱坐標(biāo)為t,且點(diǎn)P在該拋物線的對(duì)稱軸l上運(yùn)動(dòng),試探索:
①當(dāng)S1<S<S2時(shí),求t的取值范圍(其中:S為△PAB的面積,S1為△OAB的面積,S2為四邊形OACB的面積);
②當(dāng)t取何值時(shí),點(diǎn)P在⊙M上.(寫出t的值即可)

查看答案和解析>>

科目:初中數(shù)學(xué) 來源:2010年全國中考數(shù)學(xué)試題匯編《銳角三角函數(shù)》(06)(解析版) 題型:解答題

(2010•泉州)如圖,在梯形ABCD中,∠A=∠B=90°,AB=,點(diǎn)E在AB上,∠AED=45°,DE=6,CE=7.求:AE的長(zhǎng)及sin∠BCE的值.

查看答案和解析>>

科目:初中數(shù)學(xué) 來源:2010年全國中考數(shù)學(xué)試題匯編《四邊形》(01)(解析版) 題型:選擇題

(2010•泉州)如圖所示,在折紙活動(dòng)中,小明制作了一張△ABC紙片,點(diǎn)D,E分別是邊AB、AC上,將△ABC沿著DE重疊壓平,A與A'重合,若∠A=70°,則∠1+∠2=( )

A.140°
B.130°
C.110°
D.70°

查看答案和解析>>

科目:初中數(shù)學(xué) 來源:2010年福建省泉州市中考數(shù)學(xué)試卷(解析版) 題型:填空題

(2010•泉州)如圖,點(diǎn)A,B,C,在⊙O上,∠A=45°,則∠BOC=    度.

查看答案和解析>>

同步練習(xí)冊(cè)答案