【題目】太陽能光伏發(fā)電因其清潔、安全、便利、高效等特點,已成為世界各國普遍關(guān)注和重點發(fā)展的新興產(chǎn)業(yè).如圖是太陽能電池板支撐架的截面圖,其中線段AB、CD、EF表示支撐角鋼,太陽能電池板緊貼在支撐角鋼AB上且長度均為300cm,AB的傾斜角為30°,BE=CA=50cm,支撐角鋼CD、EF與地面接觸點分別為D、F,CD垂直于地面,FE⊥AB于點E.點A到地面的垂直距離為50cm,求支撐角鋼CD和EF的長度各是多少.(結(jié)果保留根號)
【答案】CD=75cm;cm.
【解析】
延長BA交FD延長線于點G,作AH⊥DG,根據(jù)題意得出AB=300cm、BE=AC=50cm、AH=50cm、∠AGH=30°,先求得AG=2AH=100cm、CG=150cm,繼而由CD=CG可得答案;由EG=AB﹣BE+AG=350根據(jù)EF=EGtan∠EGF可得答案.
如圖所示,延長BA交FD延長線于點G,過點A作AH⊥DG于點H.
由題意知,AB=300cm、BE=AC=50cm、AH=50cm、∠AGH=30°.
在Rt△AGH中,∵AG=2AH=100cm,∴CG=AC+AG=150cm,則CD=CG=75cm.
∵EG=AB﹣BE+AG=300﹣50+100=350(cm).
在Rt△EFG中,EF=EGtan∠EGF=350tan30°=350×=(cm).
答:支撐角鋼CD的長為75cm,EF的長為cm.
科目:初中數(shù)學 來源: 題型:
【題目】如圖,直線AB分別與兩坐標軸交于點A(6,0),B(0,12),點C的坐標為(3,0)
(1)求直線AB的解析式;
(2)在線段AB上有一動點P.
①過點P分別作x,y軸的垂線,垂足分別為點E,F(xiàn),若矩形OEPF的面積為16,求點P的坐標.
②連結(jié)CP,是否存在點P,使△ACP與△AOB相似?若存在,求出點P的坐標;若不存在,請說明理由.
查看答案和解析>>
科目:初中數(shù)學 來源: 題型:
【題目】如圖,在平面直角坐標系中,點A、B、C的坐標分別為(0,2)、(-1,0)、(2,0).
(1)求直線AB的函數(shù)表達式;
(2)直線AB上有一點P,使得△PBC的面積等于9,求點P的坐標;
(3)設(shè)點D與A、B、C 點構(gòu)成平行四邊形,直接寫出所有符合條件的點D的坐標.
查看答案和解析>>
科目:初中數(shù)學 來源: 題型:
【題目】在平面直角坐標系中,正方形A1B1C1D1、D1 E1E2B2、A2B2 C2D2、D2 E3E4B3……按如圖所示的方式放置,其中點B1在y軸上,點C1、E1、E2、C2、E3、E4、C3……在x軸上,已知正方形A1B1C1D1的邊長為l,∠B1C1O= 60°, B1C1∥B2C2∥B3C3……,則正方形A2017B2017 C2017 D2017的邊長是( )
A. ()2016 B. ()2017 C. ()2016 D. ()2017
查看答案和解析>>
科目:初中數(shù)學 來源: 題型:
【題目】在平面直角坐標系xOy中,拋物線與軸交于點A,頂點為點B,點C與點A關(guān)于拋物線的對稱軸對稱.
(1)求直線BC的解析式;
(2)點D在拋物線上,且點D的橫坐標為4.將拋物線在點A,D之間的部分(包含點A,D)記為圖象G,若圖象G向下平移()個單位后與直線BC只有一個公共點,求的取值范圍.
查看答案和解析>>
科目:初中數(shù)學 來源: 題型:
【題目】如圖,在矩形ABCD中,AD=AB,∠BAD的平分線交BC于點E,DH⊥AE于點H,連接BH并延長交CD于點F,連接DE交BF于點O,下列結(jié)論:①∠AED=∠CED;②OE=OD;③BH=HF;④BC﹣CF=2HE;⑤AB=HF,其中正確的有( )
A. 2個 B. 3個 C. 4個 D. 5個
查看答案和解析>>
科目:初中數(shù)學 來源: 題型:
【題目】在Rt△ABC中,∠BAC=90°,D是BC的中點,E是AD的中點.過點A作AF∥BC交于BE的延長線于點F.
(1)求證:△AEF≌△DEB;
(2)若AC=4,AB=5,求菱形ADCF的面積.
查看答案和解析>>
科目:初中數(shù)學 來源: 題型:
【題目】拋物線y=ax2+bx+3(a≠0)經(jīng)過點A(﹣1,0),B(,0),且與y軸相交于點C.
(1)求這條拋物線的表達式;
(2)求∠ACB的度數(shù);
(3)點D是拋物線上的一動點,是否存在點D,使得tan∠DCB=tan∠ACO.若存在,請求出點D的坐標,若不存在,說明理由.
查看答案和解析>>
科目:初中數(shù)學 來源: 題型:
【題目】在平面直角坐標系中有一△BOD,,把 BO 繞點O 逆時針旋轉(zhuǎn) 90°得OA, 連接AB,作于點 C,點B 的坐標為(1,3).
(1)求直線AB 的解析式;
(2)若AB 中點為 M,連接 CM,動點 P、Q 同時從 C 點出發(fā),點 P 沿射線CM 以每秒2個單位長度的速度運動,點Q沿線段CD 以每秒1個單位長度的速度向終點 D 運動,當Q點運動到D 點時,P、Q同時停止運動,設(shè)△PQO 的面積為 S(),運動時間為t秒,求S與t的函數(shù)關(guān)系式,并直接寫出自變量t的取值范圍;
(3)在(2)的條件下,是否存在這樣的 P 點,使得P、O、B為頂點的三角形是直角三角形?若存在,求出對應的t 值和此時Q點的坐標;若不存在,請說明理由.
查看答案和解析>>
湖北省互聯(lián)網(wǎng)違法和不良信息舉報平臺 | 網(wǎng)上有害信息舉報專區(qū) | 電信詐騙舉報專區(qū) | 涉歷史虛無主義有害信息舉報專區(qū) | 涉企侵權(quán)舉報專區(qū)
違法和不良信息舉報電話:027-86699610 舉報郵箱:58377363@163.com