(10分)
如圖,等邊三角形ABC和等邊三角形DEC,CE和AC重合,CE=AB,

(1)求證:AD=BE;
(2)若CE繞點(diǎn)C順時(shí)針旋轉(zhuǎn)30度,連BD交AC于點(diǎn)G,取AB的中點(diǎn)F連FG,求證:BE=2FG;
(3)在(2)的條件下AB=2,則AG= ______.(直接寫出結(jié)果)

(1)證明略
(2)證明略
(3)解析:
(1)△CBF≌△CAD,.∴BE=AD.
(2)過B作BT⊥AC于T,易證△BTG≌△DCG,,∴BG=DG.
連AD,則FG// AD,F(xiàn)G=AD,又△BCE≌△ACD.∴BE=AD=2FG
(3)AG=
練習(xí)冊(cè)系列答案
相關(guān)習(xí)題

科目:初中數(shù)學(xué) 來源: 題型:

(11·孝感)(滿分10分)如圖,等邊△ABC內(nèi)接于⊙O,P是上任一點(diǎn)(點(diǎn)P不與點(diǎn)A、B重合),連AP、BP,過點(diǎn)C作CM∥BP交的延長(zhǎng)線于點(diǎn)M.

(1)填空:∠APC=______度,∠BPC=_______度;(2分)

(2)求證:△ACM≌△BCP;(4分)

(3)若PA=1,PB=2,求梯形PBCM的面積.(4分)

 

查看答案和解析>>

科目:初中數(shù)學(xué) 來源: 題型:

(11·孝感)(滿分10分)如圖,等邊△ABC內(nèi)接于⊙O,P是上任一點(diǎn)(點(diǎn)P不與點(diǎn)A、B重合),連AP、BP,過點(diǎn)C作CM∥BP交的延長(zhǎng)線于點(diǎn)M.
(1)填空:∠APC=______度,∠BPC=_______度;(2分)
(2)求證:△ACM≌△BCP;(4分)
(3)若PA=1,PB=2,求梯形PBCM的面積.(4分)

查看答案和解析>>

科目:初中數(shù)學(xué) 來源:2011年河北省中考模擬試卷數(shù)學(xué)卷 題型:解答題

(本小題滿分10分)
如圖,點(diǎn)P、Q分別是邊長(zhǎng)為4cm的等邊∆ABC邊AB、BC上的動(dòng)點(diǎn),點(diǎn)P從頂點(diǎn)A,點(diǎn)Q從頂點(diǎn)B同時(shí)出發(fā),且它們的速度都為1cm/s,
(1)連接AQ、CP交于點(diǎn)M,則在P、Q運(yùn)動(dòng)的過程中,∠CMQ變化嗎?若變化,則說明理由,若不變,則求出它的度數(shù);
(2)何時(shí)∆PBQ是直角三角形?
(3)如圖,若點(diǎn)P、Q在運(yùn)動(dòng)到終點(diǎn)后繼續(xù)在射線AB、BC上運(yùn)動(dòng),直線AQ、CP交點(diǎn)為M,則∠CMQ變化嗎?若變化,則說明理由,若不變,則求出它的度數(shù);

查看答案和解析>>

科目:初中數(shù)學(xué) 來源:2010-2011學(xué)年度臨沂市費(fèi)縣八年級(jí)第二學(xué)期期末檢測(cè)數(shù)學(xué) 題型:解答題

(11·孝感)(滿分10分)如圖,等邊△ABC內(nèi)接于⊙O,P是上任一點(diǎn)(點(diǎn)P不與點(diǎn)A、B重合),連AP、BP,過點(diǎn)C作CM∥BP交的延長(zhǎng)線于點(diǎn)M.
(1)填空:∠APC=______度,∠BPC=_______度;(2分)
(2)求證:△ACM≌△BCP;(4分)
(3)若PA=1,PB=2,求梯形PBCM的面積.(4分)

查看答案和解析>>

科目:初中數(shù)學(xué) 來源:2012屆度臨沂市費(fèi)縣八年級(jí)第二學(xué)期期末檢測(cè)數(shù)學(xué) 題型:解答題

(11·孝感)(滿分10分)如圖,等邊△ABC內(nèi)接于⊙O,P是上任一點(diǎn)(點(diǎn)P不與點(diǎn)A、B重合),連AP、BP,過點(diǎn)C作CM∥BP交的延長(zhǎng)線于點(diǎn)M.

(1)填空:∠APC=______度,∠BPC=_______度;(2分)

(2)求證:△ACM≌△BCP;(4分)

(3)若PA=1,PB=2,求梯形PBCM的面積.(4分)

 

查看答案和解析>>

同步練習(xí)冊(cè)答案