精英家教網 > 初中數學 > 題目詳情
(2007•隴南)如圖,拋物線y=x2+mx+n交x軸于A、B兩點,交y軸于點C,點P是它的頂點,點A的橫坐標是-3,點B的橫坐標是1.
(1)求m、n的值;
(2)求直線PC的解析式;
(3)請?zhí)骄恳渣cA為圓心、直徑為5的圓與直線PC的位置關系,并說明理由.(參考數:≈1.41,≈1.73,≈2.24)

【答案】分析:(1)由已知可得A(-3,0)、B(1,0),代入拋物線解析式,可求m,n值;(2)由已知的二次函數解析式可求P,C兩點坐標,從而可求直線PC的解析式;(3)關鍵是求點A到直線PC的距離,再與圓的半徑2.5進行比較;為此,過點A作AE⊥PC,垂足為E,由△COD∽△AED,求出兩個三角形中相關線段長,利用相似比求AE;
解答:解:(1)由已知條件可知:拋物線y=x2+mx+n經過A(-3,0)、B(1,0)兩點.

解得m=1,n=-

(2)∵y=x2+x-,
∴P(-1,-2),C
設直線PC的解析式是y=kx+b,則,
解得k=,b=-
∴直線PC的解析式是y=x-

(3)如圖,過點A作AE⊥PC,垂足為E.
設直線PC與x軸交于點D,則點D的坐標為(3,0).
在Rt△OCD中,
∵OC=,OD=3,

∵OA=3,OD=3,
∴AD=6.
∵∠COD=∠AED=90°,∠CDO公用,
∴△COD∽△AED.
,即
∴AE=≈2.688>2.5
∴以點A為圓心、直徑為5的圓與直線PC相離.
點評:本題考查了拋物線解析式的求法,拋物線上特殊點的運用,及直線與圓的位置關系的判定.
練習冊系列答案
相關習題

科目:初中數學 來源:2007年全國中考數學試題匯編《二次函數》(07)(解析版) 題型:解答題

(2007•隴南)如圖,拋物線y=x2+mx+n交x軸于A、B兩點,交y軸于點C,點P是它的頂點,點A的橫坐標是-3,點B的橫坐標是1.
(1)求m、n的值;
(2)求直線PC的解析式;
(3)請?zhí)骄恳渣cA為圓心、直徑為5的圓與直線PC的位置關系,并說明理由.(參考數:≈1.41,≈1.73,≈2.24)

查看答案和解析>>

科目:初中數學 來源:2007年全國中考數學試題匯編《一次函數》(04)(解析版) 題型:解答題

(2007•隴南)如圖,兩摞相同規(guī)格的飯碗整齊地疊放在桌面上,請根據圖中給的數據信息,解答下列問題:
(1)求整齊擺放在桌面上飯碗的高度y(cm)與飯碗數x(個)之間的一次函數解析式;
(2)把這兩摞飯碗整齊地擺成一摞時,這摞飯碗的高度是多少?

查看答案和解析>>

科目:初中數學 來源:2010年湖北省宜昌市枝江市雅畈中學九年級中考數學強化訓練專題3 二次函數(解析版) 題型:解答題

(2007•隴南)如圖,拋物線y=x2+mx+n交x軸于A、B兩點,交y軸于點C,點P是它的頂點,點A的橫坐標是-3,點B的橫坐標是1.
(1)求m、n的值;
(2)求直線PC的解析式;
(3)請?zhí)骄恳渣cA為圓心、直徑為5的圓與直線PC的位置關系,并說明理由.(參考數:≈1.41,≈1.73,≈2.24)

查看答案和解析>>

科目:初中數學 來源:2007年甘肅省隴南市中考數學試卷(解析版) 題型:解答題

(2007•隴南)如圖,拋物線y=x2+mx+n交x軸于A、B兩點,交y軸于點C,點P是它的頂點,點A的橫坐標是-3,點B的橫坐標是1.
(1)求m、n的值;
(2)求直線PC的解析式;
(3)請?zhí)骄恳渣cA為圓心、直徑為5的圓與直線PC的位置關系,并說明理由.(參考數:≈1.41,≈1.73,≈2.24)

查看答案和解析>>

科目:初中數學 來源:2007年甘肅省隴南市中考數學試卷(解析版) 題型:解答題

(2007•隴南)如圖,兩摞相同規(guī)格的飯碗整齊地疊放在桌面上,請根據圖中給的數據信息,解答下列問題:
(1)求整齊擺放在桌面上飯碗的高度y(cm)與飯碗數x(個)之間的一次函數解析式;
(2)把這兩摞飯碗整齊地擺成一摞時,這摞飯碗的高度是多少?

查看答案和解析>>

同步練習冊答案