【題目】如圖,AB是⊙O的直徑,AC是⊙O的切線,切點為A,BC交⊙O于點D,點E是AC的中點.
(1)試判斷直線DE與⊙O的位置關(guān)系,并說明理由;
(2)若⊙O的半徑為2,∠B=50°,AC=4.8,求圖中陰影部分的面積.
【答案】(1)直線DE與⊙O相切.理由見解析;(2)圖中陰影部分的面積為4.8﹣π.
【解析】(1)連接OE、OD,如圖,根據(jù)切線的性質(zhì)得∠OAC=90°,再證明△AOE≌△DOE得到∠ODE=∠OAE=90°,然后根據(jù)切線的判定定理得到DE為⊙O的切線;
(2)先計算出∠AOD=2∠B=100°,利用四邊形的面積減去扇形的面積計算圖中陰影部分的面積.
(1)直線DE與⊙O相切.理由如下:
連接OE、OD,如圖,
∵AC是⊙O的切線,
∴AB⊥AC,
∴∠OAC=90°,
∵點E是AC的中點,O點為AB的中點,
∴OE∥BC,
∴∠1=∠B,∠2=∠3,
∵OB=OD,
∴∠B=∠3,
∴∠1=∠2,
在△AOE和△DOE中
,
∴△AOE≌△DOE,
∴∠ODE=∠OAE=90°,
∴OA⊥AE,
∴DE為⊙O的切線;
(2)∵點E是AC的中點,
∴AE=AC=2.4,
∵∠AOD=2∠B=2×50°=100°,
∴圖中陰影部分的面積=2××2×2.4﹣.
科目:初中數(shù)學 來源: 題型:
【題目】如圖,菱形OABC的頂點O是原點,頂點B在y軸上,兩條對角線AC、OB的長分別是6和4,反比例函數(shù)的圖象經(jīng)過點C.
(1)寫出點A的坐標,并求k的值;
(2)將菱形OABC沿y軸向下平移多少個單位長度后點A會落在該反比例函數(shù)的圖象上?
查看答案和解析>>
科目:初中數(shù)學 來源: 題型:
【題目】如圖,把△ABC先向上平移3個單位長度,再向右平移2個單位長度,得到△A1B1C1.
(1)在圖中畫出△A1B1C1,并寫出點A1、B1、C1的坐標;
(2)連接A1A、C1C,則四邊形A1ACC1的面積為______.
查看答案和解析>>
科目:初中數(shù)學 來源: 題型:
【題目】一只不透明袋子中裝有三只大小、質(zhì)地都相同的小球,球面上分別標有數(shù)字1、﹣2、3,攪勻后先從中任意摸出一個小球(不放回),記下數(shù)字作為點A的橫坐標,再從余下的兩個小球中任意摸出一個小球,記下數(shù)字作為點A的縱坐標.
(1)用畫樹狀圖或列表等方法列出所有可能出現(xiàn)的結(jié)果;
(2)求點A落在第四象限的概率.
查看答案和解析>>
科目:初中數(shù)學 來源: 題型:
【題目】如圖,直線AB,CD,EF相交于點O.
(1)寫出∠COE的鄰補角;
(2)分別寫出∠COE和∠BOE的對頂角;
(3)如果∠BOD=60°,∠BOF=90°,求∠AOF和∠FOC的度數(shù).
查看答案和解析>>
科目:初中數(shù)學 來源: 題型:
【題目】如圖,OP平分∠AOB,PA⊥OA,PB⊥OB,垂足分別為A,B.下列結(jié)論中:①PA=PB;②△AOP≌△BOP;③OA=OB;④PO平分∠APB.其中成立的有________(填寫正確的序號).
查看答案和解析>>
科目:初中數(shù)學 來源: 題型:
【題目】如圖,在□ABCD 中,∠ADB=90°,點 E 為 AB 邊的中點,點 F 為CD 邊的中點.
(1)求證:四邊形 DEBF 是菱形;
(2)當∠A 等于多少度時,四邊形 DEBF 是正方形?并說明你的理由.
查看答案和解析>>
科目:初中數(shù)學 來源: 題型:
【題目】如圖,已知:E是∠AOB的平分線上一點,EC⊥OB,ED⊥OA,C、D是垂足,連接CD,且交OE于點F.
(1)求證:OE是CD的垂直平分線.
(2)若∠AOB=60,請你探究OE,EF之間有什么數(shù)量關(guān)系?并證明你的結(jié)論。
查看答案和解析>>
湖北省互聯(lián)網(wǎng)違法和不良信息舉報平臺 | 網(wǎng)上有害信息舉報專區(qū) | 電信詐騙舉報專區(qū) | 涉歷史虛無主義有害信息舉報專區(qū) | 涉企侵權(quán)舉報專區(qū)
違法和不良信息舉報電話:027-86699610 舉報郵箱:58377363@163.com