【題目】在平面直角坐標(biāo)系中,點A的坐標(biāo)為,以線段OA為邊作等邊三角形,使點B落在第四象限內(nèi),點Cx正半軸上一動點,連接BC,以線段BC為邊作等邊三角形,使點D落在第四象限內(nèi).

1)如圖1,在點C運(yùn)動的過程巾,連接AD.

全等嗎?請說明理由:

②延長DAy軸于點E,若,求點C的坐標(biāo):

2)如圖2,已知,當(dāng)點C從點O運(yùn)動到點M時,點D所走過的路徑的長度為_________

【答案】1)①全等,見解析;②點C6,0);(26

【解析】

1)①先根據(jù)等邊三角形的性質(zhì)得∠OBA=CBD=60°,OB=BA,BC=BD,則∠OBC=ABD,然后可根據(jù)“SAS”可判定△OBC≌△ABD;
②由全等三角形的性質(zhì)可得∠BAD=BOC=OAB=60°,可得∠EAO=60°,可求AE=2OA=4,即可求點C坐標(biāo);
2)由題意可得點E是定點,點DAE上移動,點D所走過的路徑的長度=OC=6

解:(1)①△OBC和△ABD全等,
理由是:
∵△AOB,△CBD都是等邊三角形,
OB=AB,CB=DB,∠ABO=DBC
∴∠OBC=ABD,
在△OBC和△ABD中,

∴△OBC≌△ABDSAS);
②∵△OBC≌△ABD,
∵∠BAD=BOC=60°,
又∵∠OAB=60°
∴∠OAE=180°-OAB-BAD=60°,
RtOEA中,AE=2OA=4
OC=OA+AC=6
∴點C6,0);
2)∵△OBC≌△ABD,
∵∠BAD=BOC=60°,AD=OC
又∵∠OAB=60°,
∴∠OAE=180°-OAB-BAD=60°,
AE=2OA=4,OE=2

∴點E0,2
∴點E不會隨點C位置的變化而變化
∴點D在直線AE上移動
∵當(dāng)點C從點O運(yùn)動到點M時,
∴點D所走過的路徑為長度為AD=OC=6
故答案為:(1)①全等,見解析;②點C6,0);(26

練習(xí)冊系列答案
相關(guān)習(xí)題

科目:初中數(shù)學(xué) 來源: 題型:

【題目】已知,如圖,為坐標(biāo)原點,四邊形為矩形,,點的中點,點在直線上運(yùn)動,當(dāng)是腰長為5的等腰三角形,則點的坐標(biāo)為_________________________。

查看答案和解析>>

科目:初中數(shù)學(xué) 來源: 題型:

【題目】運(yùn)城市對市民開展了有關(guān)霧霾的調(diào)查問卷,調(diào)查內(nèi)容是“你認(rèn)為哪種措施治理霧霾最有效”,有以下四個選項:

A.綠化造林 B.汽車限行 C.拆除燃煤小鍋爐   D.使用清潔能源.

調(diào)查過程隨機(jī)抽取了部分市民進(jìn)行調(diào)查,并將調(diào)查結(jié)果繪制了兩幅不完整的統(tǒng)計圖,請回答下列問題:

1)這次被調(diào)查的市民共有多少人?

2)請你將統(tǒng)計圖1補(bǔ)充完整.

3)求圖2項目對應(yīng)的扇形的圓心角的度數(shù).

4)請你結(jié)合自己的實際情況對有效治理霧霾提幾點建議.(至少寫一條)

查看答案和解析>>

科目:初中數(shù)學(xué) 來源: 題型:

【題目】某校七年級學(xué)生在農(nóng)場進(jìn)行社會實踐勞動時,采摘了黃瓜和茄子共千克,了解到采摘的這部分黃瓜和茄子的種植成本共元,還了解到如下信息:黃瓜的種植成本是/千克,售價是/千克;茄子的種植成本是/千克,售價是/千克.

1)求采摘的黃瓜和茄子各多少千克?

2)這些采摘的黃瓜和茄子全部賣出可賺多少元?

查看答案和解析>>

科目:初中數(shù)學(xué) 來源: 題型:

【題目】已知在△ABC和△ABD中,∠DAB=∠ABC90°,ADABCB,BD6cm,F為線段BD上一動點,以每秒1cm的速度從B勻速運(yùn)動到D,過F作直線FQAF,且FQAF,點Q在直線AF的右側(cè),設(shè)點F運(yùn)動時間為ts).

1)當(dāng)△ABF為等腰三角形時,t   

2)當(dāng)F點在線段BO上時,過Q點作QHBD于點H,求證:△AOF≌△FHQ;

3)當(dāng)F點在線段OD上運(yùn)動的過程中,△ABQ的面積是否變化?若不變,求出它的值.

查看答案和解析>>

科目:初中數(shù)學(xué) 來源: 題型:

【題目】如圖,拋物線y1=﹣x2+2向右平移1個單位得到拋物線y2,則圖中陰影部分的面積是( 。

A. 2B. 3C. 4D. 無法計算

查看答案和解析>>

科目:初中數(shù)學(xué) 來源: 題型:

【題目】將連續(xù)的奇數(shù)1、35、7、、,按一定規(guī)律排成如表:

圖中的T字框框住了四個數(shù)字,若將T字框上下左右移動,按同樣的方式可框住另外的四個數(shù), 若將T字框上下左右移動,則框住的四個數(shù)的和不可能得到的數(shù)是(

A.22B.70C.182D.206

查看答案和解析>>

科目:初中數(shù)學(xué) 來源: 題型:

【題目】如圖所示是長方體的平面展開圖,設(shè),若

1)求長方形的周長與長方形的周長(用字母進(jìn)行表示) ;

2)若長方形的周長比長方形的周長少8,求原長方體的體積.

查看答案和解析>>

同步練習(xí)冊答案