【題目】如圖,在RtABC中,∠C=,ACD沿AD折疊,使得點(diǎn)C落在斜邊AB上的點(diǎn)E處.

1)問(wèn):△BDE與△BAC相似嗎?

2)已知AC=6BC=8,求線段AD的長(zhǎng)度.

【答案】(1)相似;(2)3.

【解析】試題分析: 1)根據(jù)折疊的性質(zhì)得出∠C=AED=,利用∠DEB=C,B=B證明三角形相似;(2)先由勾股定理求出AB的長(zhǎng),再由折疊的性質(zhì)知DE=CDAE=AC,BE=AB-AE,在RtBDE中運(yùn)用勾股定理求出DE,即CD,最后在RtACD中運(yùn)用勾股定理得出AD

試題解析:1)相似.理由如下:

∵∠C=ACD沿AD折疊,使得點(diǎn)C落在斜邊AB上的點(diǎn)E處,

∴∠C=AED=,

∴∠DEB=C=,

∵∠B=B,

∴△BDE∽△BAC;

2)由勾股定理,得

AB==10

由折疊的性質(zhì)知,AE=AC=6DE=CD,AED=C=

BE=AB-AE=10-6=4,

RtBDE中,由勾股定理得,

,

解得:CD=3,

RtACD中,由勾股定理得

解得:AD=3.

練習(xí)冊(cè)系列答案
相關(guān)習(xí)題

科目:初中數(shù)學(xué) 來(lái)源: 題型:

【題目】在平面直角坐標(biāo)系xOy中,直線ABy軸于A點(diǎn),交x軸于B點(diǎn), .

已知點(diǎn),寫(xiě)出點(diǎn)D關(guān)于直線AB對(duì)稱(chēng)的點(diǎn)的坐標(biāo);

現(xiàn)在一直角三角板的直角頂點(diǎn)放置于AB的中點(diǎn)C,并繞C點(diǎn)旋轉(zhuǎn),兩直角邊分別交x軸、y軸于N如圖兩點(diǎn),求證: ;

E是線段OB上一點(diǎn), G,交ABF,求的值.

查看答案和解析>>

科目:初中數(shù)學(xué) 來(lái)源: 題型:

【題目】某手機(jī)銷(xiāo)售商分別以每部進(jìn)價(jià)分別為800元、670元的AB兩種型號(hào)的手機(jī),下表是近兩周的銷(xiāo)售情況:

銷(xiāo)售時(shí)段

銷(xiāo)售數(shù)量

銷(xiāo)售收入

A種型號(hào)

B種型號(hào)

第一周

3臺(tái)

6臺(tái)

7650

第二周

4臺(tái)

10臺(tái)

11800

(進(jìn)價(jià)、售價(jià)均保持不變,利潤(rùn)=銷(xiāo)售收入﹣進(jìn)貨成本)

1)A、B兩種型號(hào)的手機(jī)的銷(xiāo)售單價(jià);

2)若手機(jī)銷(xiāo)售商準(zhǔn)備再采購(gòu)這兩種型號(hào)的手機(jī)共30臺(tái),且利潤(rùn)不低于4000元,求A種型號(hào)的手機(jī)至少要采購(gòu)多少臺(tái)?

查看答案和解析>>

科目:初中數(shù)學(xué) 來(lái)源: 題型:

【題目】如圖,在真角坐標(biāo)系中,矩形0ABC的頂點(diǎn)AC在坐標(biāo)軸上,點(diǎn)B(4,2);過(guò)點(diǎn)D(0,3)和E(6,0)的直線分別與AB、BC交于點(diǎn)M、N

(1)求直線DE的函數(shù)表達(dá)式和點(diǎn)MN的坐標(biāo);

(2)若函數(shù)yk0,k為常數(shù))經(jīng)過(guò)點(diǎn)M,求該函數(shù)的表達(dá)式,并判定點(diǎn)N是否在該函數(shù)的圖象上:

(3)求△OMN的面積S;

(4)若函教yk0,k為常數(shù))的圖象與△BMN沒(méi)有交點(diǎn),清楚直接寫(xiě)出k的取值范圈,不需解答過(guò)程.

查看答案和解析>>

科目:初中數(shù)學(xué) 來(lái)源: 題型:

【題目】如圖,在△ABC中,AB=8cm,BC=16cm,動(dòng)點(diǎn)P從點(diǎn)A開(kāi)始沿AB邊運(yùn)動(dòng),速度為2cm/s;動(dòng)點(diǎn)Q從點(diǎn)B開(kāi)始沿BC邊運(yùn)動(dòng),速度為4cm/s;如果P、Q兩動(dòng)點(diǎn)同時(shí)運(yùn)動(dòng),那么何時(shí)△QBP與△ABC相似?

查看答案和解析>>

科目:初中數(shù)學(xué) 來(lái)源: 題型:

【題目】如圖,網(wǎng)格中的每個(gè)小正方形的邊長(zhǎng)都是1,每個(gè)小正方形的頂點(diǎn)叫做格點(diǎn).

△ACB和△DCE的頂點(diǎn)都在格點(diǎn)上,ED的延長(zhǎng)線交AB于點(diǎn)F.

(1)求證:△ACB∽△DCE;(2)求證:EF⊥AB.

查看答案和解析>>

科目:初中數(shù)學(xué) 來(lái)源: 題型:

【題目】已知,點(diǎn)是等邊內(nèi)的任一點(diǎn),連接,,

如圖,已知,將繞點(diǎn)按順時(shí)針?lè)较蛐D(zhuǎn),使重合,得

的度數(shù)是__________.

)用等式表示線段,之間的數(shù)量關(guān)系,并證明.(圖為備用圖)

查看答案和解析>>

科目:初中數(shù)學(xué) 來(lái)源: 題型:

【題目】如圖,在3×3的正方形網(wǎng)格(每個(gè)小正方形的邊長(zhǎng)均為1)中有四個(gè)格點(diǎn)A,B,C,D,以其中一點(diǎn)為原點(diǎn),網(wǎng)格線所在直線為坐標(biāo)軸(水平線為橫軸),建立平面直角坐標(biāo)系,使其余三個(gè)點(diǎn)中存在兩個(gè)點(diǎn)關(guān)于一條坐標(biāo)軸對(duì)稱(chēng).

(1)原點(diǎn)是 (填字母A,B,C,D );

(2)若點(diǎn)P在3×3的正方形網(wǎng)格內(nèi)的坐標(biāo)軸上,且與四個(gè)格點(diǎn)A,B,C,D,中的兩點(diǎn)能構(gòu)成面積為1的等腰直角三角形,則點(diǎn)P的坐標(biāo)為 (寫(xiě)出可能的所有點(diǎn)P的坐標(biāo))

查看答案和解析>>

科目:初中數(shù)學(xué) 來(lái)源: 題型:

【題目】如圖,在△ABC中,AB=4 cm,AC=2 cm

(1)AB上取一點(diǎn)DD不與AB重合),當(dāng)AD=_________cm時(shí),△ACD∽△ABC

(2)AC的延長(zhǎng)線上取一點(diǎn)E,當(dāng)CE=________cm時(shí),△AEB∽△ABC此時(shí)BEDC有怎樣的位置關(guān)系?為什么?

查看答案和解析>>

同步練習(xí)冊(cè)答案