【題目】如圖,在△ABC中,已知點O是邊AB、AC垂直平分線的交點,點E是∠ABC、∠ACB角平分線的交點,若∠O+∠E=180°,則∠A=_____度.
【答案】36.
【解析】
連接AO并延長,由垂直平分線和三角形外角的性質(zhì)可得∠BOC=∠OBA+∠OCA+∠BAC=2∠BAC,由角平分線和三角形內(nèi)角和定理可得∠BEC=90°+∠BAC,再根據(jù)已知條件∠O+∠E=180°即可求解.
解:如圖,連接OA并延長.
∵點O是AB,AC的垂直平分線的交點,
∴OA=OB=OC,
∴∠OAB=∠ABO,∠OAC=∠OCA,
∵∠BOC=∠ABO+∠OAB+∠OCA+∠OAC=2∠BAC,
∵點E是∠ABC、∠ACB角平分線的交點,
∴∠E=180°-(∠ABC+∠ACB)
=180°-(180°-∠BAC)
=90°+∠BAC,
∵∠BOC+∠E=180°,
∴2∠BAC+90°+∠BAC=180°,
∴∠BAC=36°,
故答案為:36.
科目:初中數(shù)學(xué) 來源: 題型:
【題目】如圖,點O是等腰△ABC的外心,AD是圓O的切線,切點為A,過點C作CD≡∥AB,交AD于點D.連接AO并延長交BC于點M,連接AD,交過點C的直線于點P,且∠BCP=∠ACD.
(1)判斷直線PC與⊙O的位置關(guān)系,并說明理由;
(2)若AB=12,BC=8.求PC的長.
查看答案和解析>>
科目:初中數(shù)學(xué) 來源: 題型:
【題目】小明家準(zhǔn)備裝修一套新住房,若甲、乙兩個裝飾公司,合做需6周完成,需工錢5.2萬元;若甲公司單獨做4周后,剩下的由乙公司來做,還需9周才能完成,需工錢4.8萬元,若只選一個公司單獨完成,從節(jié)約開支角度考慮,小明家是選甲公司、還是乙公司請你說明理由.
查看答案和解析>>
科目:初中數(shù)學(xué) 來源: 題型:
【題目】某鎮(zhèn)為響應(yīng)中央關(guān)于建設(shè)社會主義新農(nóng)村的號召,決定公路相距25km的A,B兩站之間E點修建一個土特產(chǎn)加工基地,如圖,DA⊥AB于A,CB⊥AB于B,已知DA=15km,CB=10km,現(xiàn)在要使C、D兩村到E點的距離相等,那么基地E應(yīng)建在離A站多少km的地方?
查看答案和解析>>
科目:初中數(shù)學(xué) 來源: 題型:
【題目】小王沿街勻速行走,發(fā)現(xiàn)每隔6分鐘從背后駛過一輛18路公交車,每隔3分鐘從迎面駛來一輛18路公交車.假設(shè)每輛18路公交車行駛速度相同,而且18路公交車總站每隔固定時間發(fā)一輛車,那么發(fā)車間隔的時間是( 。
A. 3分鐘 B. 4分鐘 C. 5分鐘 D. 6分鐘
查看答案和解析>>
科目:初中數(shù)學(xué) 來源: 題型:
【題目】如圖,在平行四邊形ABCD中,對角線AC,BD交于點O,AE平分∠BAD交BC于點E,且∠ADC=60°,AB=3,BC=6.求平行四邊形ABCD的面積.
查看答案和解析>>
科目:初中數(shù)學(xué) 來源: 題型:
【題目】如圖,有、、三個居民小區(qū)的位置成三角形,現(xiàn)決定在三個小區(qū)之間修建一個購物超市,使超市到三個小區(qū)的距離相等,則超市應(yīng)建在( )
A.在∠A、∠B兩內(nèi)角平分線的交點處
B.在AC、BC兩邊垂直平分線的交點處
C.在AC、BC兩邊高線的交點處
D.在AC、BC兩邊中線的交點處
查看答案和解析>>
科目:初中數(shù)學(xué) 來源: 題型:
【題目】(閱讀)如圖1,等邊△ABC中,P是AC邊上一點,Q是CB延長線上一點,若AP=BQ.則過P作PF∥BC交AB于F,可證△APF是等邊三角形,再證△PDF≌QDB可得D是FB的中點.請寫出證明過程.
(運用)如圖2,△ABC是邊長為6的等邊三角形,P是AC邊上一動點,由A向C運動(與A,C不重合),Q是CB延長線上一動點,與點P同時以相同的速度由B向CB延長線方向運動(Q不與B重合),過P作PE⊥AB于E,連接PQ交AB于D.
(1)當(dāng)∠BQD=30°時,求AP的長;
(2)在運動過程中線段ED的長是否發(fā)生變化?如果不變,直接寫出線段ED的長;如果發(fā)生改變,請說明理由.
查看答案和解析>>
科目:初中數(shù)學(xué) 來源: 題型:
【題目】如圖,已知一次函數(shù)的圖象 與x軸、y軸分別交于點A,B.
(1)求點A,B的坐標(biāo);
(2)M為ー次函數(shù)y=x+3的圖象上一點,若 △ABM與△ABO的面積相等,求點M的坐標(biāo);
(3)Q為y軸上的一點,若三角形ABQ為等腰三角形 ,請直接寫出點Q的坐標(biāo).
查看答案和解析>>
湖北省互聯(lián)網(wǎng)違法和不良信息舉報平臺 | 網(wǎng)上有害信息舉報專區(qū) | 電信詐騙舉報專區(qū) | 涉歷史虛無主義有害信息舉報專區(qū) | 涉企侵權(quán)舉報專區(qū)
違法和不良信息舉報電話:027-86699610 舉報郵箱:58377363@163.com