【題目】如圖,在ABCD中,AC為對(duì)角線,AC=BC=5,AB=6,AE是△ABC的中線.
(1)用無刻度的直尺畫出△ABC的高CH(保留畫圖痕跡);
(2)求△ACE的面積.
【答案】(1)詳見解析;(2)6.
【解析】
試題分析:(1)連接BD,BD與AE交于點(diǎn)F,連接CF并延長(zhǎng)到AB,與AB交于點(diǎn)H,則CH為△ABC的高;(2)根據(jù)等腰三角形三線合一的性質(zhì)可求得AH的長(zhǎng),再由勾股定理求得CH的長(zhǎng),繼而求得△ABC的面積,又由AE是△ABC的中線,求得△ACE的面積.
試題解析:(1)如圖,連接BD,BD與AE交于點(diǎn)F,連接CF并延長(zhǎng)到AB,則它與AB的交點(diǎn)即為H.理由如下:
∵BD、AC是ABCD的對(duì)角線,
∴點(diǎn)O是AC的中點(diǎn),
∵AE、BO是等腰△ABC兩腰上的中線,
∴AE=BO,AO=BE,
∵AO=BE,
∴△ABO≌△BAE(SSS),
∴∠ABO=∠BAE,
△ABF中,∵∠FAB=∠FBA,∴FA=FB,
∵∠BAC=∠ABC,
∴∠EAC=∠OBC,
由可得△AFC≌BFC(SAS)
∴∠ACF=∠BCF,即CH是等腰△ABC頂角平分線,
所以CH是△ABC的高;
(2)∵AC=BC=5,AB=6,CH⊥AB,
∴AH=AB=3,
由勾股定理可得CH=4,
∴S△ABC=ABCH=×6×4=12,
∵AE是△ABC的中線,
∴S△ACE=S△ABC=6.
年級(jí) | 高中課程 | 年級(jí) | 初中課程 |
高一 | 高一免費(fèi)課程推薦! | 初一 | 初一免費(fèi)課程推薦! |
高二 | 高二免費(fèi)課程推薦! | 初二 | 初二免費(fèi)課程推薦! |
高三 | 高三免費(fèi)課程推薦! | 初三 | 初三免費(fèi)課程推薦! |
科目:初中數(shù)學(xué) 來源: 題型:
【題目】某校為了解學(xué)生的課外閱讀情況,隨機(jī)抽取了一個(gè)班級(jí)的學(xué)生,對(duì)他們一周的讀書時(shí)間進(jìn)行了統(tǒng)計(jì),統(tǒng)計(jì)數(shù)據(jù)如下表所示:
讀書時(shí)間(小時(shí)) | 7 | 8 | 9 | 10 | 11 |
學(xué)生人數(shù) | 6 | 10 | 9 | 8 | 7 |
則該班學(xué)生一周讀書時(shí)間的中位數(shù)和眾數(shù)分別是( 。
A. 9,8 B. 9,9 C. 9.5,9 D. 9.5,8
查看答案和解析>>
科目:初中數(shù)學(xué) 來源: 題型:
【題目】在長(zhǎng)為10cm,7cm,5cm,3cm的四根木條,選其中三根組成三角形,則能組成三角形的個(gè)數(shù)為( )
A.1B.2C.3D.4
查看答案和解析>>
科目:初中數(shù)學(xué) 來源: 題型:
【題目】觀察下列式子:
1×3+1=22;
7×9+1=82;
25×27+1=262;
79×81+1=802;
…
可猜想第2016個(gè)式子為 .
查看答案和解析>>
科目:初中數(shù)學(xué) 來源: 題型:
【題目】如圖,P,Q分別是雙曲線在第一、三象限上的點(diǎn),PA⊥軸,QB⊥軸,垂足分別為A,B,點(diǎn)C是PQ與軸的交點(diǎn).設(shè)△PAB的面積為,△QAB的面積為,△QAC的面積為,則有( )
A. B. C. D.
查看答案和解析>>
科目:初中數(shù)學(xué) 來源: 題型:
【題目】如圖,已知點(diǎn)A(0,2),B(2,2),C(-1,-2),拋物線F:與直線x=-2交于點(diǎn)P.
(1)當(dāng)拋物線F經(jīng)過點(diǎn)C時(shí),求它的表達(dá)式;
(2)設(shè)點(diǎn)P的縱坐標(biāo)為,求的最小值,此時(shí)拋物線F上有兩點(diǎn),,且≤-2,比較與的大小;
(3)當(dāng)拋物線F與線段AB有公共點(diǎn)時(shí),直接寫出m的取值范圍.
查看答案和解析>>
百度致信 - 練習(xí)冊(cè)列表 - 試題列表
湖北省互聯(lián)網(wǎng)違法和不良信息舉報(bào)平臺(tái) | 網(wǎng)上有害信息舉報(bào)專區(qū) | 電信詐騙舉報(bào)專區(qū) | 涉歷史虛無主義有害信息舉報(bào)專區(qū) | 涉企侵權(quán)舉報(bào)專區(qū)
違法和不良信息舉報(bào)電話:027-86699610 舉報(bào)郵箱:58377363@163.com