(2013•北侖區(qū)二模)割圓術是我國古代數(shù)學家劉徽創(chuàng)造的一種求周長和面積的方法:隨著圓內接正多邊形邊數(shù)的增加,它的周長和面積越來越接近圓周長和圓面積,“割之彌細,所失彌少,割之又割,以至于不可割,則與圓周合體而無所失矣”.試用這個方法解決問題:如圖,⊙的內接多邊形周長為3,⊙O的外切多邊形周長為3.4,則下列各數(shù)中與此圓的周長最接近的是( 。
分析:根據(jù)圓外切多邊形的周長大于圓周長,圓內接多邊形的周長小于圓周長.圓的內接多邊形周長為3,外切多邊形周長為3.4,所以圓周長在3與3.4之間,然后把3與3.4平方,再利用夾逼法對即可選擇答案.
解答:解:圓外切多邊形的周長大于圓周長,圓內接多邊形的周長小于圓周長.
圓的內接多邊形周長為3,外切多邊形周長為3.4,所以圓周長在3與3.4之間.
∵32=9,3.42=11.56,
9
<圓的周長<
11.56

只有只有C選項滿足條件.
故選:C.
點評:此題主要考查了圓的性質與無理數(shù)的估算,關鍵是知道圓外切多邊形的周長大于圓周長,圓內接多邊形的周長小于圓周長.
練習冊系列答案
相關習題

科目:初中數(shù)學 來源: 題型:

(2013•北侖區(qū)二模)在數(shù)-2,0,-
1
2
,2中,其中最小的數(shù)是( 。

查看答案和解析>>

科目:初中數(shù)學 來源: 題型:

(2013•北侖區(qū)二模)已知樣本數(shù)據(jù)1,0,6,1,2,下列說法不正確的是(  )

查看答案和解析>>

科目:初中數(shù)學 來源: 題型:

(2013•北侖區(qū)二模)若關于x的一元二次方程a(x+m)2=3兩個實根為x1=-1,x2=3,則拋物線y=a(x+m-2)2-3與x軸的交點橫坐標分別是( 。

查看答案和解析>>

科目:初中數(shù)學 來源: 題型:

(2013•北侖區(qū)二模)下列命題:
①40°角為內角的兩個等腰三角形必相似;
②反比例函數(shù)y=-
2
x
,當x>-2時,y隨x的增大而增大;
③兩圓的半徑分別是3和4,圓心距為d,若兩圓有公共點,則1<d<7.
④若圓的半徑為5,AB、CD是兩條平行弦,且AB=8,CD=6,則弦AC的長為
2
或5
2

⑤函數(shù)y=-(x-3)2+4(-1≤x≤4)的最大值是4,最小值是3.
其中真命題有( 。

查看答案和解析>>

同步練習冊答案