如圖,四邊形ABCD中,△ABM,△CDN是分別以AB、CD為一條邊的正三角形,E、F分別在這二個(gè)三角形外接圓上,試問AE+EB+EF+FD+FC是否存在最小值?若存在最小值,則E、F兩點(diǎn)的位置在什么地方?并說明理由.若不存在最小值,亦請(qǐng)說出理由.
如圖,在兩正三角形內(nèi)作正△BEP、正△CFQ,連接PE、PM,QD,QN.
易證,△BPM≌△BEA,△CDF≌△CNQ,
∴PM=AE,QN=DF,
∴AE+EB+EF+FD+FC=MP+PE+EF+FQ+QN.
所以,AE+EB+EF+FD+FC存在最小值,即E、F兩點(diǎn)位于MN與兩圓的兩個(gè)交點(diǎn).
練習(xí)冊(cè)系列答案
相關(guān)習(xí)題

科目:初中數(shù)學(xué) 來源:不詳 題型:單選題

兩圓的半徑分別為7cm和8cm,圓心距為1cm,則兩圓的位置關(guān)系是( 。
A.相離B.相交C.內(nèi)切D.外切

查看答案和解析>>

科目:初中數(shù)學(xué) 來源:不詳 題型:填空題

函數(shù)y=
x-3
x+1
+(x-1)0的自變量x的取值范圍是______;已知反比例函數(shù)y=
2
x
的圖象過點(diǎn)(a-1,2),則a=______;半徑分別為1cm、2cm的兩圓相切,則圓心距為______.

查看答案和解析>>

科目:初中數(shù)學(xué) 來源:不詳 題型:單選題

如圖,已知⊙O1與⊙O2外切于點(diǎn)C,AB為兩圓外公切線,切點(diǎn)為A,B,若⊙O1的半徑為1,⊙O2的半徑為3,則圖中陰影部分的面積是(  )
A.4
3
-
5
6
π
B.4
3
-
11
6
π
C.8
3
-
11
6
π
D.8
3
-
5
3
π

查看答案和解析>>

科目:初中數(shù)學(xué) 來源:不詳 題型:解答題

已知⊙O的半徑為R,⊙P的半徑為r(r<R),且⊙P的圓心P在⊙O上.設(shè)C是⊙P上一點(diǎn),過點(diǎn)C與⊙P相切的直線交⊙O于A、B兩點(diǎn).
(1)若點(diǎn)C在線段OP上,(如圖1).求證:PA•PB=2Rr;
(2)若點(diǎn)C不在線段OP上,但在⊙O內(nèi)部如圖(2).此時(shí),(1)中的結(jié)論是否成立?若成立,請(qǐng)給予證明;若不成立,說明理由;
(3)若點(diǎn)C在⊙O的外部,如圖(3).此時(shí),PA•PB與R,r的關(guān)系又如何?請(qǐng)直接寫出,不要求給予證明或說明理由.

查看答案和解析>>

科目:初中數(shù)學(xué) 來源:不詳 題型:解答題

如圖,⊙O1與⊙O2外切于點(diǎn)C,一條外公切線切兩圓于點(diǎn)A,B,已知⊙O1的半徑是9,⊙O2的半徑是3,求∠BAC的度數(shù).

查看答案和解析>>

科目:初中數(shù)學(xué) 來源:不詳 題型:單選題

如圖,正方形ABCD的對(duì)角線AC、BD交于點(diǎn)M,且分正方形為四個(gè)三角形,⊙O1、⊙O2、⊙O3、⊙O4分別為△AMB、△BMC、△CMD、△DMA的內(nèi)切圓,已知AB=1.則⊙O1、⊙O2、⊙O3、⊙O4.所夾的中心(陰影)部分的面積為( 。
A.
(4-π)(3-2
2
)
16
B.
(3-2
2
4
C.
(4-π)(3-2
2
)
4
D.
1-π
16

查看答案和解析>>

科目:初中數(shù)學(xué) 來源:不詳 題型:單選題

如圖,外切于P點(diǎn)的⊙O1和⊙O2的半徑分別為2cm和4cm,連心線交⊙O1于點(diǎn)A,交⊙O2于點(diǎn)B,AC與⊙O2相切于點(diǎn)C,連接PC,則PC的長(zhǎng)為( 。
A.2cmB.3cmC.4cmD.5cm

查看答案和解析>>

科目:初中數(shù)學(xué) 來源:不詳 題型:解答題

如圖,已知這是從正方形材料上剪裁下一個(gè)最大的圓形后剩下的邊角廢料中的一塊,其中AO⊥OB,并且AO=BO,當(dāng)AO=1時(shí),求在此圖形中可裁剪出的最大的圓的半徑.

查看答案和解析>>

同步練習(xí)冊(cè)答案