精英家教網 > 初中數學 > 題目詳情

已知,如圖AB∥CD,∠BEF、∠EFD的平分線相交于點G,求證:EG⊥FG.

證明:∵AB∥CD,
∴∠BEF+∠EFD=180°,
又EG、FG分別是∠BEF、∠EFD的平分線,
∴∠GEF=∠BEF,∠EFG=∠EFD,
∴∠GEF+∠EFG=(∠BEF+∠EFD)=90°,
∴∠P=180°-(∠GEF+∠EFG)=180°-90°=90°,
即EG⊥FG.
分析:要證EG⊥FG,即證∠GEF+∠EFG=90°.由角平分線的定義和平行線的性質可知,∠GEF+∠EFG=(∠BEF+∠EFD)=90°.
點評:本題考查了平行線的性質及角平分線的定義,關鍵是找到∠GEF+∠EFG與∠BEF+∠EFD之間的關系.
練習冊系列答案
相關習題

科目:初中數學 來源: 題型:

5、已知,如圖AB=CD,BC=AD,∠B=23°,則∠D=( 。

查看答案和解析>>

科目:初中數學 來源: 題型:

24、完成下面的證明.
已知:如圖AB=CD,BE=CF,AF=DE.求證:△ABE≌△DCF.

證明:∵AF=DE(已知)
∴AF-EF=DE-EF(
等式性質
)即AE=DF
在△ABE和△DCF中
∵AB=CD,BE=CF(
已知

AE=DF(
已證

∴△ABE≌△DCF(
SSS
).

查看答案和解析>>

科目:初中數學 來源: 題型:

精英家教網已知:如圖AB∥CD,∠1=∠A,∠2=∠C,B、E、D在一條直線上.
求∠AEC的度數.

查看答案和解析>>

科目:初中數學 來源: 題型:

21、填寫下列推理中的空格
已知:如圖AB∥CD,EC∥FB
求證:∠B+∠C=180°
證明:∵AB∥CD   (已知)
∴∠
BGC
+∠C=180°(兩直線平行,同旁內角互補)
EC∥FB
(已知)
∴∠B=∠BGC (
兩直線平行,內錯角相等

∴∠B+∠C=180°(
等量代換

查看答案和解析>>

科目:初中數學 來源: 題型:

已知,如圖AB∥CD,∠1=∠2,EP⊥FP,則以下錯誤的是(  )

查看答案和解析>>

同步練習冊答案