【題目】如圖,圓O的外接圓,AE平分交圓O于點E,交BC于點D,過點E作直線

1)判斷直線l與圓O的關系,并說明理由;

2)若的平分線BFAD于點F,求證:;

3)在(2)的條件下,若,求AF的長.

【答案】(1)直線l相切,見解析;(2)見解析;(3)AF=.

【解析】

連接由題意可證明,于是得到,由等腰三角形三線合一的性質(zhì)可證明,于是可證明,故此可證明直線l相切;

先由角平分線的定義可知,然后再證明,于是可得到,最后依據(jù)等角對等邊證明即可;

先求得BE的長,然后證明,由相似三角形的性質(zhì)可求得AE的長,于是可得到AF的長.

直線l相切.

理由:如圖1所示:連接OE

平分

,

直線l相切.

平分,

,

,即,解得;

故答案為:(1)直線l相切,見解析;(2)見解析;(3)AF=.

練習冊系列答案
相關習題

科目:初中數(shù)學 來源: 題型:

【題目】如圖,在△ABC中,AB=6cm,BC=12cm,∠B=90°.點P從點A開始沿AB邊向點B以1cm/s的速度移動,點Q從點B開始沿BC邊向點C以2cm/s的速度移動,如果P,Q分別從A,B同時出發(fā),設移動時間為ts).

(1)當時,求△PBQ的面積;

(2)當為多少時,四邊形APQC的面積最?最小面積是多少?

(3)當為多少時,△PQB與△ABC相似.

查看答案和解析>>

科目:初中數(shù)學 來源: 題型:

【題目】如圖,要在寬AB20米的甌海大道兩邊安裝路燈,路燈的燈臂CD與燈柱BC120°角,燈罩的軸線DO與燈臂CD垂直,當燈罩的軸線DO通過公路路面的中心線(即OAB的中點)時照明效果最佳,若CD=米,則路燈的燈柱BC高度應該設計為____米(計算結(jié)果保留根號).

查看答案和解析>>

科目:初中數(shù)學 來源: 題型:

【題目】如圖,在平行四邊形中,邊BCx軸上.BC=6,平行四邊形ABCD的面積為12,C是拋物線頂點,A,D在拋物線上,求拋物線的解析式.

查看答案和解析>>

科目:初中數(shù)學 來源: 題型:

【題目】(2017四川省樂山市,第10題,3分)如圖,平面直角坐標系xOy中,矩形OABC的邊OA、OC分別落在xy軸上,點B坐標為(6,4),反比例函數(shù)的圖象與AB邊交于點D,與BC邊交于點E,連結(jié)DE,將△BDE沿DE翻折至△B'DE處,點B'恰好落在正比例函數(shù)y=kx圖象上,則k的值是( 。

A. B. C. D.

查看答案和解析>>

科目:初中數(shù)學 來源: 題型:

【題目】如圖,已知拋物線的頂點在第四象限,頂點到x軸的距離為3,拋物線與x軸交于原點O0,0)及點A,且OA=4 1)求該拋物線的解析式; 2)若線段OA繞點O順時針旋轉(zhuǎn)45°OA′,試判斷點A′是否在該拋物線上,并說明理由.

查看答案和解析>>

科目:初中數(shù)學 來源: 題型:

【題目】如圖,一艘海輪位于燈塔P的北偏東60°方向,距離燈塔86 n mile的A處,它沿正南方向航行一段時間后,到達位于燈塔P的南偏東45°方向上的B處,此時B處與燈塔P的距離約為_______nmile.(結(jié)果取整數(shù),參考數(shù)據(jù):=1.7, ≈ 1.4)

查看答案和解析>>

科目:初中數(shù)學 來源: 題型:

【題目】如圖,在平面直角坐標系中,拋物線 y=ax2﹣5ax+c x 軸于點 A,點 A 的坐標為(4,0).

(1)用含 a 的代數(shù)式表示 c

(2) a時,求 x 為何值時 y 取得最小值,并求出 y 的最小值.

(3) a時,求 0≤x≤6 y 的取值范圍.

(4)已知點 B 的坐標為(0,3),當拋物線的頂點落在△AOB 外接圓內(nèi)部時,直接寫出 a的取值范圍.

查看答案和解析>>

科目:初中數(shù)學 來源: 題型:

【題目】如圖,在矩形ABCD中,AB4AD5,ADAB、BC分別與O相切于點E、FG,過點DO的切線交BC于點M,切點為N,則DM的長為( 。

A. B. C. D. 2

查看答案和解析>>

同步練習冊答案