已知△ABC,以AC為邊在△ABC外作等腰△ACD,其中AC=AD.
(1)如圖1,若∠DAC=2∠ABC,AC=BC,四邊形ABCD是平行四邊形,則∠ABC=______;
(2)如圖2,若∠ABC=30°,△ACD是等邊三角形,AB=3,BC=4.求BD的長(zhǎng);
(3)如圖3,若∠ACD為銳角,作AH⊥BC于H.當(dāng)BD2=4AH2+BC2時(shí),∠DAC=2∠ABC是否成立?若不成立,請(qǐng)說(shuō)明你的理由;若成立,證明你的結(jié)論.

【答案】分析:(1)由AC=AD得∠D=∠ACD,由平行四邊形的性質(zhì)得∠D=∠ABC,在△ACD中,由內(nèi)角和定理求解;
(2)如圖2,在△ABC外作等邊△BAE,連接CE,利用旋轉(zhuǎn)法證明△EAC≌△BAD,可證∠EBC=90°,BE=AB=3,在Rt△BCE中,由勾股定理求CE,由三角形全等得BD=CE;
(3)∠DAC=2∠ABC成立,過(guò)點(diǎn)B作BE∥AH,并在BE上取BE=2AH,連接EA,EC.并取BE的中點(diǎn)K,連接AK,仿照(2)利用旋轉(zhuǎn)法證明△EAC≌△BAD,利用內(nèi)角和定理證明結(jié)論.
解答:解:(1)45;

(2)如圖2,以A為頂點(diǎn)AB為邊在△ABC外作∠BAE=60°,并在AE上取AE=AB,連接BE和CE.
∵△ACD是等邊三角形,
∴AD=AC,∠DAC=60°.
∵∠BAE=60°,
∴∠DAC+∠BAC=∠BAE+∠BAC.
即∠EAC=∠BAD.
∴△EAC≌△BAD.
∴EC=BD.
∵∠BAE=60°,AE=AB=3,
∴△AEB是等邊三角形,
∴∠EBA=60°,EB=3,
∵∠ABC=30°,
∴∠EBC=90°.
∵∠EBC=90°,EB=3,BC=4,
∴EC=5.
∴BD=5.

(3)∠DAC=2∠ABC成立,
以下證明:
如圖3,過(guò)點(diǎn)B作BE∥AH,并在BE上取BE=2AH,連接EA,EC.并取BE的中點(diǎn)K,連接AK.
∵AH⊥BC于H,
∴∠AHC=90°.
∵BE∥AH,
∴∠EBC=90°.
∵∠EBC=90°,BE=2AH,
∴EC2=EB2+BC2=4AH2+BC2
∵BD2=4AH2+BC2,
∴EC=BD.
∵K為BE的中點(diǎn),BE=2AH,
∴BK=AH.
∵BK∥AH,
∴四邊形AKBH為平行四邊形.
又∵∠EBC=90°,
∴四邊形AKBH為矩形.
∴∠AKB=90°.
∴AK是BE的垂直平分線.
∴AB=AE.
∵AB=AE,EC=BD,AC=AD,
∴△EAC≌△BAD.
∴∠EAC=∠BAD.
∴∠EAC-∠EAD=∠BAD-∠EAD.
即∠EAB=∠DAC.
∵∠EBC=90°,∠ABC為銳角,
∴∠ABC=90°-∠EBA.
∵AB=AE,
∴∠EBA=∠BEA.
∴∠EAB=180°-2∠EBA.
∴∠EAB=2∠ABC.
∴∠DAC=2∠ABC.
點(diǎn)評(píng):本題考查了全等三角形的判定與性質(zhì),線段垂直平分線的性質(zhì),等邊三角形的判定與性質(zhì),矩形的判定與性質(zhì),勾股定理的運(yùn)用.關(guān)鍵是根據(jù)已知條件構(gòu)造全等三角形.
練習(xí)冊(cè)系列答案
相關(guān)習(xí)題

科目:初中數(shù)學(xué) 來(lái)源: 題型:

25、已知△ABC,以AC為邊在△ABC外作等腰△ACD,其中AC=AD.
(1)如圖1,若∠DAC=2∠ABC,AC=BC,四邊形ABCD是平行四邊形,則∠ABC=
45°

(2)如圖2,若∠ABC=30°,△ACD是等邊三角形,AB=3,BC=4.求BD的長(zhǎng);
(3)如圖3,若∠ACD為銳角,作AH⊥BC于H.當(dāng)BD2=4AH2+BC2時(shí),∠DAC=2∠ABC是否成立?若不成立,請(qǐng)說(shuō)明你的理由;若成立,證明你的結(jié)論.

查看答案和解析>>

科目:初中數(shù)學(xué) 來(lái)源: 題型:

已知△ABC,以AC為邊在△ABC外作等腰△ACD,其中AC=AD.
(1)如圖1,若AB=AE,∠DAC=∠EAB=60°,則∠BFC=
120°
120°

(2)如圖2,若∠ABC=30°,△ACD是等邊三角形,BC=4,AB=3.求BD的長(zhǎng);
(3)如圖3,若∠ACD為銳角,作AH⊥BC于H,當(dāng)BD2=4AH2+BC2時(shí),判定∠DAC與∠ABC的數(shù)量關(guān)系,并證明你的結(jié)論.

查看答案和解析>>

科目:初中數(shù)學(xué) 來(lái)源: 題型:

(2013•順義區(qū)一模)如圖,已知△ABC,以AC為直徑的⊙O交AB于點(diǎn)D,點(diǎn)E為
AD
的中點(diǎn),連結(jié)CE交AB于點(diǎn)F,且BF=BC.
(1)判斷直線BC與⊙O的位置關(guān)系,并證明你的結(jié)論;
(2)若⊙O的半徑為2,cosB=
3
5
,求CE的長(zhǎng).

查看答案和解析>>

科目:初中數(shù)學(xué) 來(lái)源: 題型:

已知△ABC,以AC為邊在△ABC外作等腰△ACD,其中AC=AD.
(1)如圖1,若∠DAC=2∠ABC,△ACB≌△DAC,則∠ABC=
45
45
°;
(2)如圖2,若∠ABC=30°,△ACD是等邊三角形,AB=3,BC=4.求BD的長(zhǎng).

查看答案和解析>>

科目:初中數(shù)學(xué) 來(lái)源: 題型:

已知△ABC,以AC為邊在△ABC外作等腰△ACD,其中AC=AD.
(1)如圖1,若∠DAC=2∠ABC,AC=BC,AD∥BC,則∠ABC=
45°
45°
;
(2)如圖2,以A為頂點(diǎn)AB為邊在△ABC外作∠BAM=60°,若∠ABC=30°,△ACD是等邊三角形,AB=3,BC=4.求BD的長(zhǎng).

查看答案和解析>>

同步練習(xí)冊(cè)答案