如圖,平面直角坐標(biāo)系中,拋物線y軸于點(diǎn)AP為拋物線

上一點(diǎn),且與點(diǎn)A不重合.連結(jié)AP,以AO、AP為鄰邊作OAPQ,PQ所在直線與x軸交

于點(diǎn)B.設(shè)點(diǎn)P的橫坐標(biāo)為

(1)點(diǎn)Q落在x軸上時(shí)m的值.(3分)

(3)若點(diǎn)Qx軸下方,則為何值時(shí),線段BQ的長(zhǎng)取最大值,并求出這個(gè)最大值.(4分)[參考公式:二次函數(shù)的頂點(diǎn)坐標(biāo)為()]

 

【答案】

解:(1)拋物線y軸交于點(diǎn)A,

∴點(diǎn)A的坐標(biāo)為.∴OA=3.

∵四邊形OAPQ為平行四邊形,

QP=OA=3.

∴當(dāng)點(diǎn)Q落在x軸上時(shí),

解得

當(dāng)m=0,點(diǎn)P與點(diǎn)A重合,不符合題意,舍去.

m=4.

(2)解法一:

∵點(diǎn)P的橫坐標(biāo)為m,

.                                        (5分)

∵點(diǎn)Qx軸下方,∴

時(shí),線段QB的長(zhǎng)取最大值,最大值為2.                  (7分)

解法二:

QP =3,,

∴線段BP的長(zhǎng)取最小值時(shí),線段QB的長(zhǎng)取最大值.

當(dāng)點(diǎn)P為拋物線的頂點(diǎn)時(shí),線段BP的長(zhǎng)取最小值.

當(dāng)時(shí),

∴線段BP的長(zhǎng)最小值為1.                                     (5分)

時(shí),線段QB的長(zhǎng)取最大值,最大值為3-1=2.             (7分)

【解析】略

 

練習(xí)冊(cè)系列答案
相關(guān)習(xí)題

科目:初中數(shù)學(xué) 來(lái)源: 題型:

精英家教網(wǎng)如圖,平面直角坐標(biāo)系中,O為直角三角形ABC的直角頂點(diǎn),∠B=30°,銳角頂點(diǎn)A在雙曲線y=
1x
上運(yùn)動(dòng),則B點(diǎn)在函數(shù)解析式
 
上運(yùn)動(dòng).

查看答案和解析>>

科目:初中數(shù)學(xué) 來(lái)源: 題型:

如圖,平面直角坐標(biāo)系中,⊙P與x軸分別交于A、B兩點(diǎn),點(diǎn)P的坐標(biāo)為(3,-1),AB精英家教網(wǎng)=2
3

(1)求⊙P的半徑.
(2)將⊙P向下平移,求⊙P與x軸相切時(shí)平移的距離.

查看答案和解析>>

科目:初中數(shù)學(xué) 來(lái)源: 題型:

如圖,平面直角坐標(biāo)系中,OB在x軸上,∠ABO=90°,點(diǎn)A的坐標(biāo)為(1,2).將△AOB繞點(diǎn)A逆時(shí)針旋轉(zhuǎn)90°,則點(diǎn)O的對(duì)應(yīng)點(diǎn)C的坐標(biāo)為( 。

查看答案和解析>>

科目:初中數(shù)學(xué) 來(lái)源: 題型:

如圖:平面直角坐標(biāo)系中,△ABC的三個(gè)頂點(diǎn)的坐標(biāo)為A(a,0),B(b,0),C(0,c),且a,b,c滿(mǎn)足
a+2
+|b-2|+(c-b)2=0
.點(diǎn)D為線段OA上一動(dòng)點(diǎn),連接CD.
(1)判斷△ABC的形狀并說(shuō)明理由;
(2)如圖,過(guò)點(diǎn)D作CD的垂線,過(guò)點(diǎn)B作BC的垂線,兩垂線交于點(diǎn)G,作GH⊥AB于H,求證:
S△CAD
S△DGH
=
AD
GH
;
(3)如圖,若點(diǎn)D到CA、CO的距離相等,E為AO的中點(diǎn),且EF∥CD交y軸于點(diǎn)F,交CA于M.求
FC+2AE
3AM
的值.

查看答案和解析>>

科目:初中數(shù)學(xué) 來(lái)源: 題型:

如圖在平面直角坐標(biāo)系中,A點(diǎn)坐標(biāo)為(8,0),B點(diǎn)坐標(biāo)為(0,6)C是線段AB的中點(diǎn).請(qǐng)問(wèn)在y軸上是否存在一點(diǎn)P,使得以P、B、C為頂點(diǎn)的三角形與△AOB相似?若存在,求出P點(diǎn)坐標(biāo);若不存在,說(shuō)明理由.

查看答案和解析>>

同步練習(xí)冊(cè)答案