【題目】在等腰△ABC中,AB=BC=5,AC=8,點(diǎn)E、F分別是AC、AB上的動(dòng)點(diǎn),將△AEF折疊,使點(diǎn)A落在△ABC的邊AC上點(diǎn)A′處(A′不與點(diǎn)A重合),當(dāng)△A′BC為等腰三角形時(shí),AE的長(zhǎng)為_______.
【答案】或
【解析】
由勾股定理求出AB,設(shè)AE=x,則A'E=x,A'C=8﹣2x;分三種情況討論:
①當(dāng)A'B=A'C時(shí),證明三角形相似可得結(jié)論;
②當(dāng)BC=A'C時(shí),如圖2,列出方程,解方程即可;
③當(dāng)A'B=BC時(shí),A與A'重合,此種情況不成立.
由翻折變換的性質(zhì)得:AE=A'E,∠AEF=∠A'EF=90°.
∵AC=8,BC=6,設(shè)AE=A'E=x,則A'C=8﹣2x;
分三種情況討論:
①當(dāng)A'B=A'C時(shí),如圖1,∠C=∠A=∠CBA',∴△CA'B∽△CBA,∴,∴,x=,∴AE=;
②當(dāng)BC=A'C時(shí),如圖2,則8﹣2x=5,解得:x=,∴AE=;
③當(dāng)A'B=BC時(shí),A與A'重合,此種情況不成立;
綜上所述:當(dāng)△A'BC為等腰三角形時(shí),AE的長(zhǎng)為:或.
故答案為:或.
年級(jí) | 高中課程 | 年級(jí) | 初中課程 |
高一 | 高一免費(fèi)課程推薦! | 初一 | 初一免費(fèi)課程推薦! |
高二 | 高二免費(fèi)課程推薦! | 初二 | 初二免費(fèi)課程推薦! |
高三 | 高三免費(fèi)課程推薦! | 初三 | 初三免費(fèi)課程推薦! |
科目:初中數(shù)學(xué) 來源: 題型:
【題目】(1)如圖①②,試研究其中∠1、∠2與∠3、∠4之間的數(shù)量關(guān)系;
(2)如果我們把∠1、∠2稱為四邊形的外角,那么請(qǐng)你用文字描述上述的關(guān)系式;
(3)用你發(fā)現(xiàn)的結(jié)論解決下列問題:
如圖,AE、DE分別是四邊形ABCD的外角∠NAD、∠MDA的平分線,∠B+∠C=240°,求∠E的度數(shù).
查看答案和解析>>
科目:初中數(shù)學(xué) 來源: 題型:
【題目】如圖,△ABC中,CD是∠ACB的角平分線,CE是AB邊上的高,
(1)若∠A=40°,∠B=60°,求∠DCE的度數(shù).
(2)若∠A=m,∠B=n,求∠DCE.(用m、n表示)
查看答案和解析>>
科目:初中數(shù)學(xué) 來源: 題型:
【題目】(1)如圖①,在銳角△ABC中,BD和BE三等分∠ABC,CD和CE三等分∠ACB,請(qǐng)分別寫出∠A和∠D,∠A和∠E的數(shù)量關(guān)系,并選擇其中一個(gè)說明理由;
(2)如圖②,在銳角△ABC中,BD和BE三等分∠ABC,CD和CE三等分外角∠ACM,請(qǐng)分別寫出∠A和∠D,∠A和∠E的數(shù)量關(guān)系,并選擇其中一個(gè)說明理由;
(3)如圖③,在銳角△ABC中,BD和BE三等分外角∠PBC,CD和CE三等分外角∠QCB,請(qǐng)分別直接寫出∠A和∠D,∠A和∠E的數(shù)量關(guān)系.
查看答案和解析>>
科目:初中數(shù)學(xué) 來源: 題型:
【題目】如圖,在直角坐標(biāo)系中,△ABC的三個(gè)頂點(diǎn)都在坐標(biāo)軸上,A,B兩點(diǎn)關(guān)于y軸對(duì)稱,點(diǎn)C是y軸正半軸上一個(gè)動(dòng)點(diǎn),AD是角平分線.
(1)如圖1,若∠ACB=90°,直接寫出線段AB,CD,AC之間數(shù)量關(guān)系;
(2)如圖2,若AB=AC+BD,求∠ACB的度數(shù);
(3)如圖2,若∠ACB=100°,求證:AB=AD+CD.
查看答案和解析>>
科目:初中數(shù)學(xué) 來源: 題型:
【題目】如圖1,在Rt△ABC中,∠BAC=90°,AB=AC,D,E兩點(diǎn)分別在AB,AC上,且DE∥BC,將△ADE繞點(diǎn)A順時(shí)針旋轉(zhuǎn),記旋轉(zhuǎn)角為α.
(1)問題發(fā)現(xiàn) 當(dāng)a=0°時(shí),線段BD,CE的數(shù)量關(guān)系是______;
(2)拓展探究 當(dāng)0°≤a<360°時(shí),(1)中的結(jié)論有無變化?請(qǐng)僅就圖2的情形給出證明;
(3)問題解決 設(shè)DE=,BC=3,0°≤α<360°,△ADE旋轉(zhuǎn)至A,B,E三點(diǎn)共線時(shí),直接寫出線段BE的長(zhǎng).
查看答案和解析>>
科目:初中數(shù)學(xué) 來源: 題型:
【題目】在如圖所示的坐標(biāo)系中,△ABC的三個(gè)頂點(diǎn)的坐標(biāo)分別為A(1,2),B(4,1),C(2,﹣2).
(1)請(qǐng)寫出△ABC關(guān)于x軸對(duì)稱的點(diǎn)A1,B1,C1的坐標(biāo);
(2)請(qǐng)?jiān)谧鴺?biāo)系中作出△ABC關(guān)于y軸對(duì)稱的△A2B2C2;
(3)計(jì)算△ABC的面積.
查看答案和解析>>
科目:初中數(shù)學(xué) 來源: 題型:
【題目】如圖,在Rt△ACD和Rt△BEC中,若AD=BE,DC=EC,則不正確的結(jié)論是( )
A. Rt△ACD和Rt△BCE全等 B. OA=OB
C. E是AC的中點(diǎn) D. AE=BD
查看答案和解析>>
百度致信 - 練習(xí)冊(cè)列表 - 試題列表
湖北省互聯(lián)網(wǎng)違法和不良信息舉報(bào)平臺(tái) | 網(wǎng)上有害信息舉報(bào)專區(qū) | 電信詐騙舉報(bào)專區(qū) | 涉歷史虛無主義有害信息舉報(bào)專區(qū) | 涉企侵權(quán)舉報(bào)專區(qū)
違法和不良信息舉報(bào)電話:027-86699610 舉報(bào)郵箱:58377363@163.com