11.觀察規(guī)律:(1-$\frac{1}{2^2}$)=$(1-\frac{1}{2})(1+\frac{1}{2})=\frac{1}{2}×\frac{3}{2}=\frac{3}{4}$,$(1-\frac{1}{2^2})(1-\frac{1}{3^2})=(1-\frac{1}{2})(1+\frac{1}{2})(1-\frac{1}{3})(1+\frac{1}{3})=\frac{1}{2}×\frac{3}{2}×\frac{2}{3}×\frac{4}{3}=\frac{2}{3}$,…
若(1-$\frac{1}{{2}^{2}}$)(1-$\frac{1}{{3}^{2}}$)(1-$\frac{1}{{4}^{2}}$)…(1-$\frac{1}{{n}^{2}}$)=$\frac{1008}{2015}$,n為正整數(shù),則n的值為( 。
A.1008B.1009C.2015D.2016

分析 根據(jù)題意直接將原式變形得出$\frac{1}{2}$×$\frac{n+1}{n}$=$\frac{1008}{2015}$,進(jìn)而求出答案.

解答 解:∵(1-$\frac{1}{{2}^{2}}$)(1-$\frac{1}{{3}^{2}}$)(1-$\frac{1}{{4}^{2}}$)…(1-$\frac{1}{{n}^{2}}$)=$\frac{1008}{2015}$,
∴(1-$\frac{1}{2}$)(1+$\frac{1}{2}$)(1-$\frac{1}{3}$)(1+$\frac{1}{3}$)…(1-$\frac{1}{n}$)(1+$\frac{1}{n}$)=$\frac{1008}{2015}$,
$\frac{1}{2}$×$\frac{3}{2}$×$\frac{2}{3}$×$\frac{4}{3}$…$\frac{n-1}{n}$×$\frac{n+1}{n}$=$\frac{1008}{2015}$,
則$\frac{1}{2}$×$\frac{n+1}{n}$=$\frac{1008}{2015}$,
則2016n=2015n+2015,
解得:n=2015.
故選:C.

點評 此題主要考查了因式分解的應(yīng)用,根據(jù)題意正確將原式分解因式是解題關(guān)鍵.

練習(xí)冊系列答案
相關(guān)習(xí)題

科目:初中數(shù)學(xué) 來源: 題型:選擇題

1.如圖,檢測4個足球,其中超過標(biāo)準(zhǔn)質(zhì)量的克數(shù)記為正數(shù),不足標(biāo)準(zhǔn)質(zhì)量的克數(shù)記為負(fù)數(shù),從輕重的角度看,最接近標(biāo)準(zhǔn)的是( 。
A.B.C.D.

查看答案和解析>>

科目:初中數(shù)學(xué) 來源: 題型:解答題

2.探究規(guī)律,在一列數(shù)$\sqrt{1}$,$\sqrt{2}$,$\sqrt{3}$,$\sqrt{4}$中,$\sqrt{1}$=1,$\sqrt{4}$=2.在前4個數(shù)中,有2個有理數(shù),$\sqrt{1}$,$\sqrt{2}$,$\sqrt{3}$,$\sqrt{4}$,$\sqrt{5}$,$\sqrt{6}$,$\sqrt{7}$,$\sqrt{8}$,$\sqrt{9}$中,有3個有理數(shù)1,2,3.在這個數(shù)列中,要考察里面有多少個有理數(shù),只要觀察最后一個被開方數(shù)接近于哪個平方數(shù),那么就有這個鄰近的完全平方數(shù)的算術(shù)平方根個有理數(shù).解答:
(1)在$\sqrt{1}$,$\sqrt{2}$,$\sqrt{3}$,$\sqrt{4}$,…$\sqrt{2015}$中有多少個有理數(shù)?
(2)有多少個無理數(shù)?

查看答案和解析>>

科目:初中數(shù)學(xué) 來源: 題型:填空題

19.0沒有相反數(shù).×.  (判斷對錯)

查看答案和解析>>

科目:初中數(shù)學(xué) 來源: 題型:選擇題

6.下列命題中,真命題的個數(shù)有( 。
①等腰三角形的兩腰相等;②等腰三角形的兩底角相等;③等腰三角形底邊上的中線與底邊上的高相等.
A.0個B.1個C.2個D.3個

查看答案和解析>>

科目:初中數(shù)學(xué) 來源: 題型:填空題

16.已知△ABC的三個內(nèi)角的度數(shù)之比∠A:∠B:∠C=2:3:5,則∠B=54°,∠C=90°.

查看答案和解析>>

科目:初中數(shù)學(xué) 來源: 題型:解答題

2.四邊形OABC在圖1中的直角坐標(biāo)系中,且OC在y軸上,OA∥BC,A、B兩點的坐標(biāo)分別為A(18,0),B(12,8),動點P、Q分別從O、B兩點出發(fā),點P以每秒2個單位的速度沿OA向終點A運動,點Q以每秒1個單位的速度沿BC向C運動,當(dāng)點P停止運動時,點Q同時停止運動.動點P、Q運動時間為t(單位:秒).

(1)當(dāng)t為何值時,四邊形PABQ是平行四邊形,請寫出推理過程;
(2)如圖2,線段OB、PQ相交于點D,過點D作DE∥OA,交AB于點E,射線QE交x軸于點F,PF=AO.當(dāng)t為何值時,△PQF是等腰三角形?請寫出推理過程;
(3)如圖3,過B作BG⊥OA于點G,過點A作AT⊥x軸于點A,延長CB交AT于點T.將點G折疊,折痕交邊AG、BG于點M、N,使得點G折疊后落在AT邊上的點為G′,求AG′的最大值和最小值.

查看答案和解析>>

科目:初中數(shù)學(xué) 來源: 題型:填空題

19.將$\frac{\sqrt{5}}{5}$,$\frac{\sqrt{6}}{6}$,$\frac{\sqrt{7}}{7}$從小到大排列$\frac{\sqrt{7}}{7}$<$\frac{\sqrt{6}}{6}$<$\frac{\sqrt{5}}{5}$.

查看答案和解析>>

科目:初中數(shù)學(xué) 來源: 題型:填空題

20.若c=2a+1,b=3a+6,且c=b,則a=-5.

查看答案和解析>>

同步練習(xí)冊答案