分析 (1)先證明△CDA是等腰三角形,再根據(jù)等腰三角形的性質(zhì)證明AM+CK=MK;在△MKD中,AM+CK>MK(兩邊之和大于第三邊);
(2)作點C關(guān)于FD的對稱點G,連接GK,GM,GD.證明△ADM≌△GDM后,根據(jù)全等三角形的性質(zhì)可得GM=AM,GM+GK>MK,從而得到AM+CK>MK;
(3)根據(jù)勾股定理的逆定理求得∠GKM=90°,又由點C關(guān)于FD的對稱點G,得到∠CKG=90°,∠FKC=$\frac{1}{2}$∠CKG=45°,根據(jù)三角形的外角定理,就可以求得∠CDF=15°.
解答 解:(1)①在Rt△ABC中,D是AB的中點,
∴AD=BD=CD=$\frac{1}{2}$AB,∠B=∠BDC=60°
又∵∠A=30°,
∴∠ACD=60°-30°=30°,
又∵∠CDE=60°,或∠CDF=60°時,
∴∠CKD=90°,
∴在△CDA中,AM(K)=CM(K),即AM(K)=KM(C)(等腰三角形底邊上的垂線與中線重合),
∵CK=0,或AM=0,
∴AM+CK=MK;
②由①,得
∠ACD=30°,∠CDB=60°,
又∵∠A=30°,∠CDF=30°,∠EDF=60°,
∴∠ADM=30°,
∴AM=MD,CK=KD,
∴AM+CK=MD+KD,
∴在△MKD中,AM+CK>MK(兩邊之和大于第三邊),
故答案為:①=;②>;
(2)>,
證明:連接GK,
∵點G是點A關(guān)于直線DE的對稱點
∴AD=GD,GM=AM,∠GDM=∠ADM,
∵Rt△ABC 中,D是AB的中點,
∴AD=CD=GD.
∵∠A=∠E=30°,
∴∠CDA=120°,∠EDF=60°,
∴∠GDM+∠GDK=60°,∠ADM+∠CDK=60°,
∴∠GDK=∠CDK,
在△GDK和△CDK中,
$\left\{\begin{array}{l}GD=CD\\∠GDK=∠CDK\\ DK=DK\end{array}\right.$,
∴△GDK≌△CDK,
∴GK=CK,
∵GM+GK>MK,
∴AM+CK>MK;
(3)∠CDF=15°,
由(2),得GM=AM,GK=CK,
∵MK2+CK2=AM2,
∴MK2+GK2=GM2,
∴∠GKM=90°,
又∵點C關(guān)于FD的對稱點G,
∴∠CKG=90°,∠FKC=$\frac{1}{2}$∠CKG=45°,
又∵由(1),得∠A=∠ACD=30°,
∴∠FKC=∠CDF+∠ACD,
∴∠CDF=∠FKC-∠ACD=15°.
點評 本題綜合考查了全等三角形的判定、全等三角形的性質(zhì)、軸對稱圖形的性質(zhì)以及三角形的兩邊之和大于第三邊的性質(zhì).
科目:初中數(shù)學 來源: 題型:解答題
查看答案和解析>>
科目:初中數(shù)學 來源: 題型:解答題
查看答案和解析>>
科目:初中數(shù)學 來源: 題型:解答題
查看答案和解析>>
科目:初中數(shù)學 來源: 題型:選擇題
A. | 1個 | B. | 2個 | C. | 3個 | D. | 4個 |
查看答案和解析>>
科目:初中數(shù)學 來源: 題型:解答題
查看答案和解析>>
科目:初中數(shù)學 來源: 題型:解答題
查看答案和解析>>
湖北省互聯(lián)網(wǎng)違法和不良信息舉報平臺 | 網(wǎng)上有害信息舉報專區(qū) | 電信詐騙舉報專區(qū) | 涉歷史虛無主義有害信息舉報專區(qū) | 涉企侵權(quán)舉報專區(qū)
違法和不良信息舉報電話:027-86699610 舉報郵箱:58377363@163.com