【題目】如圖,AB為⊙O的直徑,直線l與⊙O相切于點C,AD⊥l,垂足為D,AD交⊙O于點E,連接OC、BE.若AE=6,OA=5,則線段DC的長為 .
【答案】4
【解析】解:OC交BE于F,如圖,
∵AB為⊙O的直徑,
∴∠AEB=90°,
∵AD⊥l,
∴BE∥CD,
∵CD為切線,
∴OC⊥CD,
∴OC⊥BE,
∴四邊形CDEF為矩形,
∴CD=EF,
在Rt△ABE中,BE= = =8,
∵OF⊥BE,
∴BF=EF=4,
∴CD=4.
故答案為4.
OC交BE于F,如圖,有圓周角定理得到∠AEB=90°,加上AD⊥l,則可判斷BE∥CD,再利用切線的性質(zhì)得OC⊥CD,則OC⊥BE,原式可判斷四邊形CDEF為矩形,所以CD=EF,接著利用勾股定理計算出BE,然后利用垂徑定理得到EF的長,從而得到CD的長.本題考查了切線的性質(zhì):圓的切線垂直于經(jīng)過切點的半徑.解決本題的關(guān)鍵是證明四邊形CDEF為矩形.
年級 | 高中課程 | 年級 | 初中課程 |
高一 | 高一免費(fèi)課程推薦! | 初一 | 初一免費(fèi)課程推薦! |
高二 | 高二免費(fèi)課程推薦! | 初二 | 初二免費(fèi)課程推薦! |
高三 | 高三免費(fèi)課程推薦! | 初三 | 初三免費(fèi)課程推薦! |
科目:初中數(shù)學(xué) 來源: 題型:
【題目】如圖是由一些完全相同的小正方體搭成的幾何體的主視圖和左視圖,組成這個幾何體的小正方體的個數(shù)最少是( 。
A.5個
B.6個
C.7個
D.8個
查看答案和解析>>
科目:初中數(shù)學(xué) 來源: 題型:
【題目】如圖,每個小正方形的邊長為 1 個單位,每個小方格的頂點叫格點.
(1)畫出△ABC 的 AB 邊上的中線 CD;
(2)畫出△ABC 向右平移 4 個單位后得到的△A1B1C1;
(3)圖中 AC 與 A1C1 的關(guān)系是: ;
(4)圖中△ABC 的面積是 ;
(5)能使△BCE 面積為 3 的格點 E 有 個.
查看答案和解析>>
科目:初中數(shù)學(xué) 來源: 題型:
【題目】甲、乙兩車從A城出發(fā)前往B城,在整個行程中,兩車離開A城的距離y與t的對應(yīng)關(guān)系如圖所示:
(1)A、B兩城之間距離是多少千米?
(2)求乙車出發(fā)多長時間追上甲車?
(3)直接寫出甲車出發(fā)多長時間,兩車相距20千米.
查看答案和解析>>
科目:初中數(shù)學(xué) 來源: 題型:
【題目】如圖,正方形ABCD邊長為3,連接AC,AE平分∠CAD,交BC的延長線于點E,FA⊥AE,交CB延長線于點F,則EF的長為__________.
查看答案和解析>>
科目:初中數(shù)學(xué) 來源: 題型:
【題目】如圖,在平行四邊形ABCD中,以點A為圓心,AB長為半徑畫弧交AD于點F,再分別以點B、F為圓心,大于BF長為半徑畫弧,兩弧交于一點P,連接AP并延長交BC于點E,連接EF.
(1)四邊形ABEF是 ;(選填矩形、菱形、正方形、無法確定)(直接填寫結(jié)果)
(2)AE,BF相交于點O,若四邊形ABEF的周長為40,BF=10,則AE的長為 ,∠ABC= °.(直接填寫結(jié)果)
查看答案和解析>>
科目:初中數(shù)學(xué) 來源: 題型:
【題目】情系災(zāi)區(qū).5月12日我國四川汶川縣發(fā)生里氏8.0級大地震,地震給四川,甘肅,陜西等地造成巨大人員傷亡和財產(chǎn)損失.災(zāi)難發(fā)生后,我校師生和全國人民一道,迅速伸出支援的雙手,為災(zāi)區(qū)人民捐款捐物.為了支援災(zāi)區(qū)學(xué)校災(zāi)后重建,我校決定象災(zāi)區(qū)捐助床架60個,課桌凳100套.現(xiàn)計劃租甲、乙兩種貨車共8輛將這些物質(zhì)運(yùn)往災(zāi)區(qū),已知一輛甲貨車可裝床架5個和課桌凳20套,一輛乙貨車可裝床架10個和課桌凳10套.
(1)學(xué)校如何安排甲、乙兩種貨車可一次性把這些物資運(yùn)到災(zāi)區(qū)?有幾種方案?
(2)若甲種貨車每輛要付運(yùn)輸費(fèi)1200元,乙種貨車要付運(yùn)輸費(fèi)1000元,則學(xué)校應(yīng)選擇哪種方案,使運(yùn)輸費(fèi)最少?最少運(yùn)費(fèi)是多少?
查看答案和解析>>
科目:初中數(shù)學(xué) 來源: 題型:
【題目】如圖,在Rt△ACB中,∠ACB=90°,AC=BC=3,CD=1,CH⊥BD于H,點O是AB中點,連接OH,則OH= .
查看答案和解析>>
湖北省互聯(lián)網(wǎng)違法和不良信息舉報平臺 | 網(wǎng)上有害信息舉報專區(qū) | 電信詐騙舉報專區(qū) | 涉歷史虛無主義有害信息舉報專區(qū) | 涉企侵權(quán)舉報專區(qū)
違法和不良信息舉報電話:027-86699610 舉報郵箱:58377363@163.com