【題目】如圖,半徑為3的⊙O分別與x軸,y軸交于AD兩點,⊙O上兩個動點B,C,使∠BAC45°恒成立,設(shè)△ABC的重心為G,則DG的最小值是_______

【答案】

【解析】

連接AG并延長,交BC于點F,由三角形ABC的重心為G,可知FBC的中點,再由垂徑定理可知OF⊥BC,從而可求得OF的長;在AO上取點E,使AE=2EO,連接GE,可判定三角形AGE相似于三角形AFO,由相似三角形的性質(zhì)列出比例式,求得GE的長,進而可得點E的坐標,利用勾股定理求出DE的長,根據(jù)G在以E為圓心,2為半徑的圓上運動,可知DG的最小值為DE的長減去,計算即可.

解:連接AG并延長,交BC于點F.

∵△ABC的重心為G

FBC的中點,

OFBC,

∵∠BAC=45°

BOF=45°

OBF=45°

OF=BF=FC=

∵△ABC的重心為G

AG=AF.

AO上取點E,使AE=AO,連接GE

∴E(1,0

∵.

∴△AGE∽△AFO,

∴GE=

G在以E為圓心,為半徑的圓上運動

DE=

DG的最小值為

練習(xí)冊系列答案
相關(guān)習(xí)題

科目:初中數(shù)學(xué) 來源: 題型:

【題目】下列圖形都是由大小相同的小正方形按一定規(guī)律組成的,其中第1個圖形的周長為4,第2個圖形的周長為10,第3個圖形的周長為18,,按此規(guī)律排列,回答下列問題:

(1)5個圖形的周長為 ;

(2)個圖形的周長為 ;

(3)若第個圖形的周長為180,則

查看答案和解析>>

科目:初中數(shù)學(xué) 來源: 題型:

【題目】行千里致廣大是重慶人民向大家發(fā)出的旅游邀請.如圖,某建筑物上有一個旅游宣傳語廣告牌,小亮在A處測得該廣告牌頂部E處的仰角為45°,然后沿坡比為512的斜坡AC行走65米至C處,在C處測得廣告牌底部F處的仰角為76°,已知CD與水平面AB平行,EGCD垂直,且EF2米,則廣告牌頂部ECD的距離EG為( 。▍⒖紨(shù)據(jù):sin76°≈097cos76°≈024tan76°≈4

A.46B.44C.71D.69

查看答案和解析>>

科目:初中數(shù)學(xué) 來源: 題型:

【題目】如圖1,在RtABC中,∠B90°,AB4BC2,點D、E分別是邊BCAC的中點,連接DE.將△CDE繞點C逆時針方向旋轉(zhuǎn),記旋轉(zhuǎn)角為α

1)問題發(fā)現(xiàn)

①當α時,_______;

②當α180°時,______

2)拓展探究

試判斷:當0°≤α360°時,的大小有無變化?請僅就圖2的情形給出證明.

3)問題解決

CDE繞點C逆時針旋轉(zhuǎn)至A、BE三點在同一條直線上時,求線段BD的長.

查看答案和解析>>

科目:初中數(shù)學(xué) 來源: 題型:

【題目】如圖,中,上一點,過三點的,過點,交于點

1)若中點,連結(jié),求證:四邊形是平行四邊形

2)連結(jié),.當,且,,求線段的長.

查看答案和解析>>

科目:初中數(shù)學(xué) 來源: 題型:

【題目】如圖,在平面直角坐標系中,RtABC的斜邊AB在y軸上,邊AC與x軸交于點D,AE平分BAC交邊BC于點E,經(jīng)過點A、D、E的圓的圓心F恰好在y軸上,F與y軸相交于另一點G.

(1)求證:BC是F的切線;

(2)若點A、D的坐標分別為A(0,﹣1),D(2,0),求F的半徑;

(3)試探究線段AG、AD、CD三者之間滿足的等量關(guān)系,并證明你的結(jié)論.

查看答案和解析>>

科目:初中數(shù)學(xué) 來源: 題型:

【題目】甲、乙兩車分別從A、B兩地同時出發(fā),在同一條公路上,勻速行駛,相向而行,到兩車相遇時停止.甲車行駛一段時間后,因故停車0.5小時,故障解除后,繼續(xù)以原速向B地行駛,兩車之間的路程y(千米)與出發(fā)后所用時間x(小時)之間的函數(shù)關(guān)系如圖所示.

1)求甲、乙兩車行駛的速度V、V.

2)求m的值.

3)若甲車沒有故障停車,求可以提前多長時間兩車相遇.

查看答案和解析>>

科目:初中數(shù)學(xué) 來源: 題型:

【題目】某市水果批發(fā)市場內(nèi)有一種水果,保鮮期一周,如果冷藏,可以延長保鮮時間,但每天仍有一定數(shù)量的這種水果變質(zhì),假設(shè)這種水果保鮮期內(nèi)的個體重量基本保持不變,F(xiàn)有一個體戶,按市場價收購了這種水果200千克放在冷藏室內(nèi),此時市場價為每千克2元,據(jù)測算,此后這種鮮水果每千克的價格每天可上漲0.2元,但存放一天需各種費用20元,日平均每天還有1千克變質(zhì)丟棄.

1)設(shè)天后每千克鮮水果的市場價元,寫出關(guān)于的函數(shù)關(guān)系式;

2)若存放天后將鮮水果一次性出售,設(shè)鮮水果的銷售總金額為元,寫出關(guān)于的函數(shù)關(guān)系式;

3)該個體戶將這批水果存放多少天后出售,可獲最大利潤?最大利潤是多少?

(本題不要求寫出自變量的取值范圍)

查看答案和解析>>

科目:初中數(shù)學(xué) 來源: 題型:

【題目】1)問題發(fā)現(xiàn):如圖(1),在OABOCD中,OAOBOCOD,∠AOB=∠COD36°,連接AC,BD交于點M.①的值為   ;②∠AMB的度數(shù)為   ;

2)類比探究 :如圖(2),在OABOCD中,∠AOB=∠COD90°,∠OAB=∠OCD30°,連接AC,交BD的延長線于點M.請計算的值及∠AMB的度數(shù).

3)拓展延伸:在(2)的條件下,將OCD繞點O在平面內(nèi)旋轉(zhuǎn),AC,BD所在直線交于點M.若OD1,OB,請直接寫出當點C與點M重合時AC的長.

查看答案和解析>>

同步練習(xí)冊答案