如圖,已知P為平行四邊形ABCD內一點,且S△PAB=5,S△PAD=2,則S△PAC等于


  1. A.
    2
  2. B.
    3
  3. C.
    4
  4. D.
    5
B
分析:假設P點到AB的距離是h1,假設P點到DC的距離是h2,根據(jù)三角形的面積公式求出△PAB和△PDC的面積和,推出S△ADC=S△PAB+S△PDC=5+S△PDC和S△PAC=S△ADC-S△PDC-S△PAD,代入即可求出答案.
解答:∵四邊形ABCD是平行四邊形,
∴AB=DC,
假設P點到AB的距離是h1,假設P點到DC的距離是h2,
∴S△PAB=AB•h1,S△PDC=DC•h2
∴S△PAB+S△PDC=(AB•h1+DC•h2)=DC•(h1+h2),
∵h1+h2正好是AB到DC的距離,
∴S△PAB+S△PDC=S平行四邊形ABCD=S△ABC=S△ADC,
即S△ADC=S△PAB+S△PDC=5+S△PDC,
而S△PAC=S△ADC-S△PDC-S△PAD,
∴S△PAC=5-2=3,
故選B.
點評:本題主要考查對平行四邊形的性質,三角形的面積等知識點的理解和掌握,能根據(jù)性質推出S△ADC=S△PAB+S△PDC=5+S△PDC,和S△PAC=S△ADC-S△PDC-S△PAD是解此題的關鍵.
練習冊系列答案
相關習題

科目:初中數(shù)學 來源: 題型:

從邊長為a的大正方形紙板中間挖去一個邊長為b的小正方形后,將其截成四個相同的等腰梯形﹙如圖①﹚,可以拼成一個平行四邊形﹙如圖②﹚.
現(xiàn)有一平行四邊形紙片ABCD﹙如圖③﹚,已知∠A=45°,AB=6,AD=4.若將該紙片按圖②方式截成四個相同的等腰梯形,然后按圖①方式拼圖,則得到的大正方形的面積為
 
精英家教網

查看答案和解析>>

科目:初中數(shù)學 來源: 題型:

精英家教網如圖,已知△ABC的三個頂點的坐標分別為A(-1,2)、B(-3,0)、C(0,0)、
(1)請直接寫出點A關于x軸對稱的點A′的坐標;
(2)以C為位似中心,在x軸下方作△ABC的位似圖形△A1B1C1,使放大前后位似比為1:2,請畫出圖形,并求出△A1B1C1的面積;
(3)請直接寫出:以A、B、C為頂點的平行四邊形的第四個頂點D的坐標.

查看答案和解析>>

科目:初中數(shù)學 來源: 題型:

19、如圖,已知平行四邊形ABCD中,E是AB邊的中點,DE交AC于點F,AC、DE把它分成的四部分的面積分別為S1S2S3S4,下面結論:
①只有一對相似三角形
②EF:ED=1:2
③S1:S2:S3:S4=1:2:4:5
其中正確的結論是( 。

查看答案和解析>>

科目:初中數(shù)學 來源: 題型:

如圖,已知拋物線y=ax2+bx+c(a≠0)經過點A(1,0),B(6,0)和C(0,4 )三個點.
(1)求拋物線的解析式;
(2)設點E(m,n)是拋物線上一個動點,且位于第四象限,四邊形OEBF是以OB為對角線的平行四邊形,求四邊形OEBF的面積S與m之間的函數(shù)關系式,并寫出自變量m的取值范圍;
(3)當四邊形OEBF的面積為24時,請判斷四邊形OEBF是否為菱形?

查看答案和解析>>

科目:初中數(shù)學 來源: 題型:

如圖,已知拋物線m的解析式為y=x2-4,與x軸交于A、C兩點,B是拋物線m上的動點(B不與A、C重合),且B在x軸的下方,拋物線n與拋物線m關于x軸對稱,以AC為對角線的平行四邊形ABCD的第四個頂點為D.
(1)求證:點D一定在拋物線n上.
(2)平行四邊形ABCD能否為矩形?若能為矩形,求出這些矩形公共部分的面積(若只有一個矩形符合條件,則求此矩形的面積);若不能為矩形,請說明理由.
(3)若(2)中過A、B、C、D的圓交y軸于E、F,而P是弧CF上一動點(不包括C、F兩點),連接AP交y軸于N,連接EP交x軸于M.當P在運動時,四邊形AEMN的面積是否改變?若不變,則求其面積;若變化,請說明理由.
精英家教網精英家教網精英家教網

查看答案和解析>>

同步練習冊答案