【題目】已知a,b,c滿足

(1)求a,b,c的值;

(2)試問以a,b,c為邊能否構(gòu)成三角形?若能構(gòu)成三角形,求出三角形的周長;若不能構(gòu)成三角形,請說明理由.

【答案】(1)a=8,b=15,c=17;(2)40

【解析】試題分析:(1)根據(jù)二次根式有意義的條件求出a的值,然后根據(jù)非負(fù)數(shù)的性質(zhì)求出b、c的值;

2根據(jù)三角形的三邊關(guān)系定理即可判斷a、b、c能組成三角形,然后利用三角形的周長公式計算即可.

試題解析:

1)由二次根式有意義的條件可知,解得:a8,

|c17|(b15)20,

c170,b150,

解得:c17b15;

2ab81523,c17,

abc,

a、b、c能組成三角形,

∴三角形周長為8151740

練習(xí)冊系列答案
相關(guān)習(xí)題

科目:初中數(shù)學(xué) 來源: 題型:

【題目】如圖,四邊形ABCD是平行四邊形,DE//AC,交BC的延長線于點(diǎn)E,EFAB于點(diǎn)F.求證:(1BC=CE;(2AD=CF.

查看答案和解析>>

科目:初中數(shù)學(xué) 來源: 題型:

【題目】圓的內(nèi)接等腰三角形ABC,圓的半徑為10,如果底邊BC的長為16,那么△ABC的面積為

查看答案和解析>>

科目:初中數(shù)學(xué) 來源: 題型:

【題目】如圖所示,圓的周長為4個單位長度,在圓的4等分點(diǎn)處標(biāo)上數(shù)字0,1,2,3,先讓圓周上數(shù)字0所對應(yīng)的點(diǎn)與數(shù)軸上的數(shù)-2所對應(yīng)的點(diǎn)重合,再讓圓沿著數(shù)軸按順時針方向滾動,那么數(shù)軸上的數(shù)-2017將與圓周上的哪個數(shù)字重合(

A. 0 B. 1 C. 2 D. 3

查看答案和解析>>

科目:初中數(shù)學(xué) 來源: 題型:

【題目】已知數(shù)軸上兩點(diǎn)A、B對應(yīng)的數(shù)分別為﹣1、3,點(diǎn)P為數(shù)軸上一動點(diǎn),其對應(yīng)的數(shù)為x.

(1)若點(diǎn)P到點(diǎn)A、點(diǎn)B的距離相等,求點(diǎn)P對應(yīng)的數(shù);

(2)數(shù)軸上是否存在點(diǎn)P,使點(diǎn)P到點(diǎn)A、點(diǎn)B的距離之和為8?若存在,請求出x的值;若不存在,說明理由;

(3)現(xiàn)在點(diǎn)A、點(diǎn)B分別以2個單位長度/秒和0.5個單位長度/秒的速度同時向右運(yùn)動,點(diǎn)P6個單位長度/秒的速度同時從O點(diǎn)向左運(yùn)動.當(dāng)點(diǎn)A與點(diǎn)B之間的距離為3個單位長度時,求點(diǎn)P所對應(yīng)的數(shù)是多少?

查看答案和解析>>

科目:初中數(shù)學(xué) 來源: 題型:

【題目】如圖,已知,垂足為,將線段繞點(diǎn)按逆時針方向旋轉(zhuǎn),得到線段,連接.

(1)線段 ;

(2)求線段的長度.

查看答案和解析>>

科目:初中數(shù)學(xué) 來源: 題型:

【題目】某地下車庫出口處安裝了“兩段式欄桿”,點(diǎn)A是欄桿轉(zhuǎn)動的支點(diǎn),點(diǎn)E是欄桿兩段的聯(lián)結(jié)點(diǎn).當(dāng)車輛經(jīng)過時,欄桿AEF最多只能升起到如圖所示的位置,其中AB⊥BC,EF∥BC,∠AEF=135°,AB=AE=1.3米,那么適合該地下車庫的車輛限高標(biāo)志牌為(欄桿寬度忽略不計.參考數(shù)據(jù):≈1.4)( 。

A.
B.
C.
D.

查看答案和解析>>

科目:初中數(shù)學(xué) 來源: 題型:

【題目】在平行四邊形ABCD中,分別以AD、BC為邊向內(nèi)作等邊ADE和等邊BCF,連接BEDF.求證:四邊形BEDF是平行四邊形.

查看答案和解析>>

科目:初中數(shù)學(xué) 來源: 題型:

【題目】已知:甲、乙兩車分別從相距300千米的 A,B兩地同時出發(fā)相向而行,其中甲到 B地后立即返回,下圖是它們離各自出發(fā)地的距離y(千米)與行駛時間x(小時)之間的函數(shù)圖象

(1)求甲車離出發(fā)地的距離 y(千米)與行駛時間x(小時)之間的函數(shù)關(guān)系式,并寫出自變量的取值范圍;

(2)當(dāng)它們行駛到與各自出發(fā)地的距離相等時,用了 小時,求乙車離出發(fā)地的距離 y(千米)與行駛時間 x(小時)之間的函數(shù)關(guān)系式;

(3)在(2)的條件下,求它們在行駛的過程中相遇的時間.

查看答案和解析>>

同步練習(xí)冊答案