(2010•越秀區(qū)二模)在△ABC中,AB=13,BC=14,AC=15,則sinC=   
【答案】分析:首先設(shè)∠A對的邊BC為a,∠B對的邊為b,∠C對的邊為c,根據(jù)任意三角形三邊的關(guān)系c2=a2+b2-2abcosC,可求出cosC,
然后根據(jù)sin2C+cos2C=1,求出sinC.
解答:解:設(shè)△ABC中∠A對的邊BC為a,∠B對的邊為b,∠C對的邊為c,
則a=14,b=15,c=13,
c2=a2+b2-2abcosC,
∴132=142+152-2×14×15×cosC,
∴cosC==,
又sin2C+cos2C=1,
∴sinC===
故答案為:
點評:此題考查了學(xué)生對解三角形的掌握和運用.解答此題的關(guān)鍵根據(jù)任意三角形三邊的關(guān)系c2=a2+b2-2abcosC,可求出cosC,再根據(jù)正弦定理得出sinC.
練習(xí)冊系列答案
相關(guān)習(xí)題

科目:初中數(shù)學(xué) 來源:2010年黑龍江省綏化市望奎五中中考數(shù)學(xué)二模試卷(解析版) 題型:解答題

(2010•越秀區(qū)二模)已知,如圖,在直角坐標(biāo)系內(nèi),△ABC的頂點在坐標(biāo)軸上,關(guān)于x的方程x2-4x+m2-2m+5=0有實數(shù)根,并且AB、AC的長分別是方程兩根的5倍.
(1)求AB、AC的長;
(2)若tan∠ACO=,P是AB的中點,求過C、P兩點的直線解析式;
(3)在(2)問的條件下,坐標(biāo)平面內(nèi)是否存在點M,使以點O、M、P、C為頂點的四邊形是平行四邊形?若存在,請直接寫出點M的坐標(biāo);若不存在,請說明理由.

查看答案和解析>>

科目:初中數(shù)學(xué) 來源:2010年黑龍江省雞西市三校聯(lián)考中考數(shù)學(xué)二模試卷(解析版) 題型:解答題

(2010•越秀區(qū)二模)已知,如圖,在直角坐標(biāo)系內(nèi),△ABC的頂點在坐標(biāo)軸上,關(guān)于x的方程x2-4x+m2-2m+5=0有實數(shù)根,并且AB、AC的長分別是方程兩根的5倍.
(1)求AB、AC的長;
(2)若tan∠ACO=,P是AB的中點,求過C、P兩點的直線解析式;
(3)在(2)問的條件下,坐標(biāo)平面內(nèi)是否存在點M,使以點O、M、P、C為頂點的四邊形是平行四邊形?若存在,請直接寫出點M的坐標(biāo);若不存在,請說明理由.

查看答案和解析>>

科目:初中數(shù)學(xué) 來源:2010年黑龍江省綏化市望奎五中中考數(shù)學(xué)二模試卷(解析版) 題型:解答題

(2010•越秀區(qū)二模)如圖,正方形ABCD中,P是直線CD上一動點(不與C、D重合),過BC邊的中點E作直線EF⊥BP于F,直線EF交直線AB于H,過A作AQ⊥EF于Q.如圖①,當(dāng)點H在BA上時,易證:AQ+BF=2EF.
(1)當(dāng)點H在BA的延長線上時,如圖②,猜想AQ、BF、EF之間有怎樣的數(shù)量關(guān)系,并說明理由;
(2)當(dāng)點H在AB的延長線上時,如圖③,請直接寫出AQ、BF、EF之間的數(shù)量關(guān)系.

查看答案和解析>>

科目:初中數(shù)學(xué) 來源:2010年黑龍江省綏化市望奎五中中考數(shù)學(xué)二模試卷(解析版) 題型:解答題

(2010•越秀區(qū)二模)某農(nóng)戶家有7口人,在春季播種時節(jié)承包了村里80畝田地種植作物,種植的四個項目的任務(wù)和四個項目的面積比例以及每人每天完成各項目的工作量如圖所示.

(1)從上述統(tǒng)計圖可知每人每天種水稻______畝,種水稻、玉米、小麥、大豆的面積分別是______畝、______畝、______畝、______畝;
(2)如果x人每天種水稻的面積是y畝,那么y與x的關(guān)系式是______;
(3)他們一起完成種植小麥和大豆任務(wù)之后,把這7個人分成兩部分,______人種水稻;______人種玉米,就能最快地完成任務(wù).

查看答案和解析>>

科目:初中數(shù)學(xué) 來源:2010年黑龍江省綏化市望奎五中中考數(shù)學(xué)二模試卷(解析版) 題型:解答題

(2010•越秀區(qū)二模)已知梯形的一底邊為6,兩腰長分別為13和15,高為12,畫出圖形,并分別求出面積.

查看答案和解析>>

同步練習(xí)冊答案