如圖,已知AD是直角三角形ABC斜邊上的高,BE平分∠B交AD于G,AC于E,過(guò)E作EF⊥BC于F,說(shuō)明四邊形AGEF是菱形。

 在直角△ABC中,EF⊥BC,EA⊥AB,BE是角平分線

    故而AE=EF    <1>

    而AD⊥BC,EF⊥BC

    得AD∥EF

    又

     

   

    得:

    即

    得:

    由<1>、<2>得:

    故而四邊形AGFE是平行四邊形

    又AG=AE

    故而四邊形AGFE是菱形

練習(xí)冊(cè)系列答案
相關(guān)習(xí)題

科目:初中數(shù)學(xué) 來(lái)源: 題型:

如圖:已知CD是直角三角形ABC的斜邊上的高,且AD=8,BD=2,則BC=
2
5
2
5

查看答案和解析>>

科目:初中數(shù)學(xué) 來(lái)源: 題型:

如圖,已知AD是三角形紙片ABC的高,將紙片沿直線EF折疊,使點(diǎn)A與點(diǎn)D重合,給出下列判斷:
①EF是△ABC的中位線;
②△DEF的周長(zhǎng)等于△ABC周長(zhǎng)的一半;
③若四邊形AEDF是菱形,則AB=AC;
④若∠BAC是直角,則四邊形AEDF是矩形,
其中正確的是( 。

查看答案和解析>>

科目:初中數(shù)學(xué) 來(lái)源: 題型:

如圖,已知DE是直角梯形ABCD的高,將△ADE沿DE翻折,腰AD恰好經(jīng)過(guò)腰BC的中點(diǎn),則AE:BE等于( 。

查看答案和解析>>

科目:初中數(shù)學(xué) 來(lái)源:2013屆山東青島市八年級(jí)下學(xué)期期末考試數(shù)學(xué)卷(解析版) 題型:解答題

如圖,已知AD是△ABC的中線,∠ADC=45°,把△ABC沿AD對(duì)折,點(diǎn)C落在點(diǎn)E的位置,連接BE,若BC=6cm。

(1)求BE的長(zhǎng);

(2)當(dāng)AD=4cm時(shí),求四邊形BDAE的面積。

【解析】(1)由折疊可知:△ADC≌△ADE,∠EDC=2∠ADC=90°,ED=DC,又BD=DC,△BDE是等腰直角三角形,可求BE長(zhǎng);

(2)由(1)知,∠BED=45°,∠EDA=45°,∴四邊形BDAE是梯形,已知上底AD=4,下底BE=3 2,為求梯形高,過(guò)D作DF⊥BE于點(diǎn)F,DF實(shí)際上就是等腰直角三角形BDE斜邊上的高,可求長(zhǎng)度.

 

查看答案和解析>>

同步練習(xí)冊(cè)答案