【題目】在平面直角坐標(biāo)系中,一次函數(shù)y=﹣x+b的圖象與y軸交于點(diǎn)B(0,2),與反比例函數(shù)y=的圖象交于點(diǎn)A(4,﹣1).
(1)求反比例函數(shù)的表達(dá)式和一次函數(shù)表達(dá)式;
(2)如果點(diǎn)P是x軸上的一點(diǎn),且△ABP的面積是3,求P點(diǎn)的坐標(biāo).
【答案】(1)y=-,y=-x+2;(2)點(diǎn)P的坐標(biāo)為(,0)或(,0).
【解析】
(1)把點(diǎn)B(0,2)代入一次函數(shù)y=﹣x+b的關(guān)系式,可求出b的值,進(jìn)而確定一次函數(shù)的關(guān)系式,把點(diǎn)A(4,﹣1)代入反比例函數(shù)y=可求出m的值,進(jìn)而確定反比例函數(shù)關(guān)系式;
(2)求出直線與x軸的交點(diǎn),根據(jù)三角形的面積可求出PM的長,再分兩種情況解答即可.
解:(1)一次函數(shù)的圖象與軸交于點(diǎn),
,
一次函數(shù)的關(guān)系式為;
反比例函數(shù)的圖象過點(diǎn).
,
反比例函數(shù)的關(guān)系式為;
(2)設(shè)直線與軸的交點(diǎn)為;則,,
由△ABP的面積是3得,
,
,
當(dāng)點(diǎn)在點(diǎn)的右側(cè),則,因此點(diǎn),,
當(dāng)點(diǎn)在點(diǎn)的左側(cè),則,因此點(diǎn),,
點(diǎn)的坐標(biāo)為,或,.
年級 | 高中課程 | 年級 | 初中課程 |
高一 | 高一免費(fèi)課程推薦! | 初一 | 初一免費(fèi)課程推薦! |
高二 | 高二免費(fèi)課程推薦! | 初二 | 初二免費(fèi)課程推薦! |
高三 | 高三免費(fèi)課程推薦! | 初三 | 初三免費(fèi)課程推薦! |
科目:初中數(shù)學(xué) 來源: 題型:
【題目】為了解某地區(qū)中學(xué)生一周課外閱讀時(shí)長的情況,隨機(jī)抽取部分中學(xué)生進(jìn)行調(diào)查,根據(jù)調(diào)查結(jié)果,將閱讀時(shí)長分為四類:2小時(shí)以內(nèi),2~4小時(shí)(含2小時(shí)),4~6小時(shí)(含4小時(shí)),6小時(shí)及以上,并繪制了如圖所示尚不完整的統(tǒng)計(jì)圖.
(1)請補(bǔ)全條形統(tǒng)計(jì)圖;
(2)扇形統(tǒng)計(jì)圖中,課外閱讀時(shí)長“4~6小時(shí)”對應(yīng)的圓心角度數(shù)為 °;
(3)若該地區(qū)共有20000名中學(xué)生,估計(jì)該地區(qū)中學(xué)生一周課外閱讀時(shí)長不少于4小時(shí)的人數(shù).
查看答案和解析>>
科目:初中數(shù)學(xué) 來源: 題型:
【題目】某社區(qū)購買甲、乙兩種樹苗進(jìn)行綠化,已知甲種樹苗每棵30元,乙種樹苗每棵20元,且乙種樹苗棵數(shù)比甲種樹苗棵數(shù)的2倍少40棵,購買兩種樹苗的總金額為9000元.
(1)求購買甲、乙兩種樹苗各多少棵?
(2)為保證綠化效果,社區(qū)決定再購買甲、乙兩種樹苗共10棵,總費(fèi)用不超過230元,求可能的購買方案?
查看答案和解析>>
科目:初中數(shù)學(xué) 來源: 題型:
【題目】甲、乙兩人在筆直的湖邊公路上同起點(diǎn)、同終點(diǎn)、同方向勻速步行2400米,先到終點(diǎn)的人原地休息.已知甲先出發(fā)4分鐘,在整個(gè)步行過程中,甲、乙兩人的距離y(米)與甲出發(fā)的時(shí)間t(分)之間的關(guān)系如圖所示,下列結(jié)論:
①甲步行的速度為60米/分;
②乙走完全程用了32分鐘;
③乙用16分鐘追上甲;
④乙到達(dá)終點(diǎn)時(shí),甲離終點(diǎn)還有300米
其中正確的結(jié)論有( )
A. 1個(gè) B. 2個(gè) C. 3個(gè) D. 4個(gè)
查看答案和解析>>
科目:初中數(shù)學(xué) 來源: 題型:
【題目】如圖,在ABCD中,∠B=45°,過點(diǎn)C作CE⊥AD于點(diǎn),連結(jié)AC,過點(diǎn)D作DF⊥AC于點(diǎn)F,交CE于點(diǎn)G,連結(jié)EF.
(1)若DG=8,求對角線AC的長;
(2)求證:AF+FG=EF.
查看答案和解析>>
科目:初中數(shù)學(xué) 來源: 題型:
【題目】如圖所示,下列條件中,能判斷直線L1∥L2的是( )
A. ∠2=∠3 B. ∠l=∠3 C. ∠4+∠5=180 D. ∠2=∠4
查看答案和解析>>
科目:初中數(shù)學(xué) 來源: 題型:
【題目】已知二次函數(shù) 的圖象與x軸交于A,B兩點(diǎn)(點(diǎn)A在點(diǎn)B的左邊),與y軸交于點(diǎn)C,頂點(diǎn)為D.
(1)求以A,B,C,D為頂點(diǎn)的四邊形的面積;
(2)在拋物線上是否存在點(diǎn)P,使得△ABP的面積是△ABC的面積的2倍?若存在,求出點(diǎn)P的坐標(biāo);若不存在,請說明理由。
查看答案和解析>>
科目:初中數(shù)學(xué) 來源: 題型:
【題目】如圖,已知∠1和∠2互為補(bǔ)角,∠A=∠D,求證:∠B=∠C.
請?jiān)谙旅娴淖C明過程的括號內(nèi),填寫依據(jù).
證明:∵∠1與∠CGD是對頂角,
∴∠1=∠CGD( )
∵∠1+∠2=180°(已知)
∴∠2+∠CGD=180°(等量代換)
∴AE//FD( )
∴∠AEC=∠D( )
∵∠A=∠D(已知)
∴∠AEC=∠A( )
∴AB//CD( )
∴∠B=∠C( )
查看答案和解析>>
湖北省互聯(lián)網(wǎng)違法和不良信息舉報(bào)平臺 | 網(wǎng)上有害信息舉報(bào)專區(qū) | 電信詐騙舉報(bào)專區(qū) | 涉歷史虛無主義有害信息舉報(bào)專區(qū) | 涉企侵權(quán)舉報(bào)專區(qū)
違法和不良信息舉報(bào)電話:027-86699610 舉報(bào)郵箱:58377363@163.com