觀察可得最簡公分母是(x+1)(x-1),方程兩邊乘最簡公分母,可以把分式方程轉化為整式方程求解.
【解答】
(2)方程的兩邊同乘(x+1)(x-1),得
2(x-1)+4=x2-1,
即x2-2x-3=0,
(x-3)(x+1)=0,
解得x1=3,x2=-1,
檢驗:把x=3代入(x+1)(x-1)=8≠0,即x=3是原分式方程的解,
把x=-1代入(x+1)(x-1)=0,即x=-1不是原分式方程的解,
則原方程的解為:x=3.
【點評】此題考查了實數(shù)的混合運算與分式方程的解法.此題難度不大,但注意掌握絕對值的性質、負指數(shù)冪的性質、零指數(shù)冪的性質以及特殊角的三角函數(shù)值,注意解分式方程一定要驗根.
20.(本題滿分5分)如圖,已知△ABC,且∠ACB=90°。
(1)請用直尺和圓規(guī)按要求作圖(保留作圖痕跡,不寫作法和證明);
①以點A為圓心,BC邊的長為半徑作⊙A;
②以點B為頂點,在AB邊的下方作∠ABD=∠BAC.
(2)請判斷直線BD與⊙A的位置關系(不必證明).
【考點】作圖—復雜作圖;直線與圓的位置關系.
【專題】作圖題.
【分析】(1)①以點A為圓心,以BC的長度為半徑畫圓即可;
②以點A為圓心,以任意長為半徑畫弧,與邊AB、AC相交于兩點E、F,再以點B為圓心,以同等長度為半徑畫弧,與AB相交于一點M,再以點M為圓心,以EF長度為半徑畫弧,與前弧相交于點N,作射線BN即可得到∠ABD;
(2)根據(jù)內錯角相等,兩直線平行可得AC∥BD,再根據(jù)平行線間的距離相等可得點A到BD的距離等于BC的長度,然后根據(jù)直線與圓的位置關系判斷直線BD與⊙A相切.
【解答】(1)如右圖所示;
(2)直線BD與⊙A相切.
∵∠ABD=∠BAC,
∴AC∥BD,
∵∠ACB=90°,⊙A的半徑等于BC,
∴點A到直線BD的距離等于BC,
∴直線BD與⊙A相切.
【點評】本題考查了復雜作圖,主要利用了作一個角等于已知角,直線與圓的位置關系的判斷,是基本作圖,難度不大.
湖北省互聯(lián)網違法和不良信息舉報平臺 | 網上有害信息舉報專區(qū) | 電信詐騙舉報專區(qū) | 涉歷史虛無主義有害信息舉報專區(qū) | 涉企侵權舉報專區(qū)
違法和不良信息舉報電話:027-86699610 舉報郵箱:58377363@163.com