【題目】某校九年級數(shù)學(xué)興趣小組在研究相似多邊形問題時,他們提出了兩個觀點:

觀點一:將外面大三角形按圖1的方式向內(nèi)縮小,得到新三角形,它們的對應(yīng)邊間距都為1,則新三角形與原三角形相似.

觀點二:將鄰邊為610的矩形按圖2的方式向外擴張,得到新的矩形,它們的對應(yīng)邊間距都為1,則新矩形與原矩形相似.

請回答下列問題:

1)你認為上述兩個觀點是否正確,說明理由.

2)如圖3,若的周長和面積都是24,,將按圖3的方式向外擴張,得到,它們的對應(yīng)邊間距都為,,求的周長和面積.

【答案】1)觀點一相似;理由見解析;觀點二不相似;理由見解析;(2)周長是36,面積是54.

【解析】

1)根據(jù)相似三角形和相似多邊形的判定定理即可判定兩個觀點是否正確;(2)由(1)可知兩個三角形相似,求得相似比后即可求得周長及面積.

(1) 根據(jù)題意得:AB∥,BC∥,AC∥,

∴∠A=∠,∠B=∠,∠C=∠,

∴△ABC∽△,

觀點一是正確的;

圖(2)中原矩形的變成為6、10,

向外擴張后邊長變?yōu)?/span>8、12,

此時,

原矩形與新矩形不相似,

觀點二是不正確的.

2)由(1)可得△ABC∽△DEF,

相似比為,

,

,

,.

練習(xí)冊系列答案
相關(guān)習(xí)題

科目:初中數(shù)學(xué) 來源: 題型:

【題目】如圖,在中,,在內(nèi)有三個正方形,且這三個正方形都有一邊在上,都有一個頂點在上,點上,第一個正方形邊,第二個正方形邊,那么第三個正方形的邊長為______.

查看答案和解析>>

科目:初中數(shù)學(xué) 來源: 題型:

【題目】某種商品每天的銷售利潤(元)與銷售單價(元)之間滿足關(guān)系:,其圖像如圖所示.

1)銷售單價為多少元時,這種商品每天的銷售利潤最大?最大利潤為多少元?

2)若該商品每天的銷售利潤不低于12元,則銷售單價的取值范圍是_____.

查看答案和解析>>

科目:初中數(shù)學(xué) 來源: 題型:

【題目】已知正方形ABCD和正方形CGEF,且D點在CF邊上,M為AE中點,連接MD、MF,

(1)如圖1,請直接給出線段MD、MF的數(shù)量及位置關(guān)系是

(2)如圖2,把正方形CGEF繞點C順時針旋轉(zhuǎn),則(1)中的結(jié)論是否成立?若成立,請證明;若不成立,請給出你的結(jié)論并證明;

(3)若將正方形CGEF繞點C順時針旋轉(zhuǎn)30°時,CF邊恰好平分線段AE,請直接寫出的值.

查看答案和解析>>

科目:初中數(shù)學(xué) 來源: 題型:

【題目】如圖,菱形OABC的頂點O在坐標(biāo)原點頂點Ax軸上,∠B=120°,OA=2,將菱形OABC繞原點順時針旋轉(zhuǎn)105°OABC的位置,則點B的坐標(biāo)為( 。

A. , B. C. (2,-2) D. ,

查看答案和解析>>

科目:初中數(shù)學(xué) 來源: 題型:

【題目】如圖,在平面直角坐標(biāo)系中,直線l的函數(shù)表達式為yx,點O1的坐標(biāo)為(1,0),以O1為圓心,O1O為半徑畫圓,交直線l于點P1,交x軸正半軸于點O2,以O2為圓心,O2O為半徑畫圓,交直線l于點P2,交x軸正半軸于點O3,以O3為圓心,O3O為半徑畫圓,交直線l于點P3,交x軸正半軸于點O4;…按此做法進行下去,其中的長為_____

查看答案和解析>>

科目:初中數(shù)學(xué) 來源: 題型:

【題目】現(xiàn)有一塊直角三角形的鐵皮,,.要在其中剪出一個面積盡可能大的正方形,小紅和小亮各想出了甲、乙兩種方案,請你幫忙算一算哪一種方案剪出的正方形面積較大?

查看答案和解析>>

科目:初中數(shù)學(xué) 來源: 題型:

【題目】如圖,已知ABC是等腰三角形,頂角BAC=<600,D是BC邊上的一點,連接AD,線段AD繞點A順時針旋轉(zhuǎn)到AE,過點E作BC的平行線,交AB于點F,連接DE、BE、DF

(1)求證:BE=CD

(2)若ADBC,試判斷四邊形BDFE的形狀,并給出證明。

查看答案和解析>>

科目:初中數(shù)學(xué) 來源: 題型:

【題目】正方形ABCD的四個頂點都在⊙O上,E是⊙O上的一點.

(1)如圖,若點E上,FDE上的一點,DF=BE.求證:△ADF≌△ABE;

(2)在(1)的條件下,小明還發(fā)現(xiàn)線段DE、BE、AE之間滿足等量關(guān)系:DE﹣BE=AE.請你說明理由;

(3)如圖,若點E上.寫出線段DE、BE、AE之間的等量關(guān)系.(不必證明)

26

查看答案和解析>>

同步練習(xí)冊答案