精英家教網 > 初中數學 > 題目詳情

【題目】某公司計劃購買A,B兩種型號的電腦,已知購買一臺A型電腦需0.6萬元,購買一臺B型電腦需0.4萬元,該公司準備投入資金y萬元,全部用于購進35臺這兩種型號的電腦,設購進A型電腦x臺.

(1)求y關于x的函數解析式;

(2)若購進B型電腦的數量不超過A型電腦數量的2倍,則該公司至少需要投入資金多少萬元?

【答案】(1)y=0.2x+14(0<x<35);(2)該公司至少需要投入資金16.4萬元.

【解析】

(1)根據題意列出關于x、y的方程,整理得到y關于x的函數解析式;

(2)解不等式求出x的范圍,根據一次函數的性質計算即可.

解:(1)由題意得,0.6x+0.4×(35﹣x)=y,

整理得,y=0.2x+14(0<x<35);

(2)由題意得,35﹣x≤2x,

解得,x≥,

x的最小整數為12,

k=0.2>0,

yx的增大而增大,

∴當x=12時,y有最小值16.4,

答:該公司至少需要投入資金16.4萬元.

練習冊系列答案
相關習題

科目:初中數學 來源: 題型:

【題目】已知關于x的方程

(1)若方程有兩個相等的實數根,求m的值,并求出此時方程的根;

(2)是否存在正數m,使方程的兩個實數根的平方和等于224.若存在,求出滿足條件的m的值;若不存在,請說明理由.

查看答案和解析>>

科目:初中數學 來源: 題型:

【題目】如圖是某種產品展開圖,高為3cm.

1)求這個產品的體積.

2)請為廠家設計一種包裝紙箱,使每箱能裝5件這種產品,要求沒有空隙且要使該紙箱所用材料盡可能少(紙的厚度不計,紙箱的表面積盡可能。,求此長方體的表面積.

查看答案和解析>>

科目:初中數學 來源: 題型:

【題目】如圖所示,是等腰直角三角形,其中邊上的一點,連接,過,且,連接并延長,交點.若四邊形的面積為,則的面積為__________

查看答案和解析>>

科目:初中數學 來源: 題型:

【題目】如圖:在平行四邊形ABCD的邊AB,CD上截取AF,CE,使得AF=CE,連接EF,點M,N是線段EF上兩點,且EM=FN,連接AN,CM.

(1)求證:AFN≌△CEM;

(2)若∠CMF=107°,CEM=72°,求∠NAF的度數.

查看答案和解析>>

科目:初中數學 來源: 題型:

【題目】數學課上,李老師準備了四張背面看上去無差別的卡片A,B,C,D,每張卡片的正面標有字母a,b,c表示三條線段(如圖),把四張卡片背面朝上放在桌面上,李老師從這四張卡片中隨機抽取一張卡片后不放回,再隨機抽取一張.

(1)用樹狀圖或者列表表示所有可能出現的結果;

(2)求抽取的兩張卡片中每張卡片上的三條線段都能組成三角形的概率.

查看答案和解析>>

科目:初中數學 來源: 題型:

【題目】春節(jié)期間,某商場計劃購進甲、乙兩種商品,已知購進甲商品2件和乙商品3件共需270元;購進甲商品3件和乙商品2件共需230元.

1)求甲、乙兩種商品每件的進價分別是多少元?

2)商場決定甲商品以每件40元出售,乙商品以每件90元出售,為滿足市場需求,需購進甲、乙兩種商品共100件,且甲種商品的數量不少于乙種商品數量的4倍,請你求出獲利最大的進貨方案,并確定最大利潤.

查看答案和解析>>

科目:初中數學 來源: 題型:

【題目】如圖所示,小正方形方格的邊長為 1,

按要求作圖,并根據要求解答問題:

1)作圖:連接圖中小正方形方格的某兩個頂點,分別得到三條線段、,使得、、;

2)判斷(1)中的三條線段、能否構成三角形,并說明理由.

查看答案和解析>>

科目:初中數學 來源: 題型:

【題目】閱讀材料:

我們可以用配方法求一個二次三項式的最大值或最小值,例如:求代數式的最小值.方法如下:

解:

,得

∴代數式的最小值是4.

請根據上述材料,解決下列問題:

(1)求代數式的最小值.

(2)用配方法求代數式的最值.

查看答案和解析>>

同步練習冊答案