【題目】計(jì)算:

1534

2)(×(-36

3)-―(1―0.5)÷×[2(4)2]

4)(×52÷||+(2019×42020

【答案】1 6 ;(230;(3 27;(414

【解析】

1)運(yùn)用有理數(shù)的加法交換律和結(jié)合律進(jìn)行簡算即可;

2)運(yùn)用乘法分配律把括號內(nèi)的各項(xiàng)都乘以(-36),然后再算加減法即可;

3)先算乘方和括號內(nèi)的,再算乘除,最后算加減即可得到答案;

4)先計(jì)算乘方、絕對值和積的乘方,再算乘除法,最后 算加減即可.

1534

=5-+(-34

=5+1

=6;

2)(×(-36

=×(-36)-×(-36)-×(-36

=-3+27+6

=30

3)-―(1―0.5)÷×[2(4)2]

=÷×18

=×3×18

= ―27

=-27;

4)(×52÷||+(2019×42020

=

=

=10+4

=14.

練習(xí)冊系列答案
相關(guān)習(xí)題

科目:初中數(shù)學(xué) 來源: 題型:

【題目】如圖所示,將矩形紙片ABCD折疊,使點(diǎn)D與點(diǎn)B重合,點(diǎn)C落在點(diǎn)C′處,折痕為EF,若∠ABE=20°,那么∠EFC′的度數(shù)為( 。

A. 115° B. 120° C. 125° D. 130°

查看答案和解析>>

科目:初中數(shù)學(xué) 來源: 題型:

【題目】如圖,在△ABC中,點(diǎn)DE分別是邊BC,AC上的中點(diǎn),連接DE,并延長DE至點(diǎn)F,使EF=ED,連接ADAF,BFCF,線段ADBF相交于點(diǎn)O,過點(diǎn)DDGBF,垂足為點(diǎn)G.

(1)求證:四邊形ABDF是平行四邊形;

(2)當(dāng)時(shí),試判斷四邊形ADCF的形狀,并說明理由;

(3)若∠CBF=2ABF,求證:AF=2OG

查看答案和解析>>

科目:初中數(shù)學(xué) 來源: 題型:

【題目】如圖,正比例函數(shù)與反比例函數(shù)的圖像有一個(gè)交點(diǎn),3),軸于點(diǎn),平移直線,使其經(jīng)過點(diǎn),得到直線,則直線對應(yīng)的函數(shù)解析式是_____________.

查看答案和解析>>

科目:初中數(shù)學(xué) 來源: 題型:

【題目】如圖,是某河上一座古拱橋的截面圖,拱橋橋洞上沿是拋物線形狀,拋物線兩端點(diǎn)與水面的和距離都是1m,拱橋的跨度為10m,橋洞與水面的最大距離是5m,橋洞兩側(cè)壁上各有一盞距離水面4m的景觀燈,建立適當(dāng)坐標(biāo)系.

1)求拋物線的解析式.

2)求兩盞景觀燈之間的水平距離.

查看答案和解析>>

科目:初中數(shù)學(xué) 來源: 題型:

【題目】如圖,在平面直角坐標(biāo)系中,雙曲線經(jīng)過□的頂點(diǎn)、,點(diǎn)的坐標(biāo)為(,1),點(diǎn)軸上,且軸,平行四邊形的面積是8.

1)求雙曲線和AB所在直線的解析式;

2)點(diǎn))、)是雙曲線0)圖象上的兩點(diǎn),若,則 ;(填“<”、“=”或“>”)

查看答案和解析>>

科目:初中數(shù)學(xué) 來源: 題型:

【題目】目前我市校園手機(jī)現(xiàn)象越來越受到社會(huì)關(guān)注,針對這種現(xiàn)象,我市某中學(xué)九年級數(shù)學(xué)興趣小組的同學(xué)隨機(jī)調(diào)查了學(xué)校若干名家長對中學(xué)生帶手機(jī)現(xiàn)象的看法,統(tǒng)計(jì)整理并制作了如下的統(tǒng)計(jì)圖:

1)這次調(diào)查的家長總數(shù)為________人.家長表示不贊同的人數(shù)為________;

2請?jiān)趫D①中把條形統(tǒng)計(jì)圖補(bǔ)充完整

3)從這次接受調(diào)查的家長中隨機(jī)抽查一個(gè),恰好是贊同的家長的概率是________;

4)求圖②中表示家長無所謂的扇形圓心角的度數(shù)

查看答案和解析>>

科目:初中數(shù)學(xué) 來源: 題型:

【題目】如圖,我市某中學(xué)在創(chuàng)建特色校園的活動(dòng)中,將學(xué)校的辦學(xué)理念做成了宣傳牌(CD),放置在教學(xué)樓的頂部(如圖所示),該中學(xué)數(shù)學(xué)活動(dòng)小組的同學(xué)在山坡坡腳A處測得宣傳牌底D的仰角為60°,沿坡AB向上走到B處測得宣傳牌頂部C的仰角為45°.已知山坡AB的坡度為,AB=10米,AE=15米.

(1)求點(diǎn)B距水平面AE的高度BH;

(2)求宣傳牌CD的高度.(結(jié)果精確到0.1米.參考數(shù)據(jù):,

查看答案和解析>>

科目:初中數(shù)學(xué) 來源: 題型:

【題目】如圖,正方形ABCD中,FDC的中點(diǎn),EBC上一點(diǎn),CE=BC,求證:∠AFE是直角。

查看答案和解析>>

同步練習(xí)冊答案