【題目】如圖,已知:C是以AB為直徑的半圓O上一點,CH⊥AB于點H,直線AC與過B點的切線相交于點D,E為CH中點,連接AE并延長交BD于點F,直線CF交直線AB于點G.
(1)求證:點F是BD中點;
(2)求證:CG是⊙O的切線;
(3)若FB=FE=2,求⊙O的半徑.
【答案】(1)見解析;(2)見解析;(3)⊙O半徑為2.
【解析】
(1)由已知中CH⊥AB于點H,DB為圓的切線,我們易得到△AEH∽AFB,△ACE∽△ADF,進而根據(jù)三角形相似,對應(yīng)邊成比例,根據(jù)E為CH中點,得到點F是BD中點;
(2)連接CB、OC,根據(jù)圓周定理的推論,我們易得在直角三角形BCD中CF=BF,進而求出∠OCF=90°,由切線的判定定理,得到CG是⊙O的切線;
(3)由由FC=FB=FE,易得FA=FG,且AB=BG,由切割線定理及勾股定理,我們可以求出AB的長,即圓的直徑,進而得到圓的半徑.
(1)∵CH⊥AB,DB⊥AB,
∴△AEH∽△AFB,△ACE∽△ADF,
∴,
∵HE=EC,
∴BF=FD,即點F是BD中點;
(2)連接CB、OC,
∵AB是直徑,
∴∠ACB=90°,
∵F是BD中點,
∴∠BCF=∠CBF=90°﹣∠CBA=∠CAB=∠ACO,
∴∠OCF=90°,
又∵OC為圓O半徑,
∴CG是⊙O的切線,
(3)∵FC=FB=FE,
∴∠FCE=∠FEC,
∵∠FEC=∠AEH,
∴∠FCE=∠AEH,
∵∠G+∠FCE=90°,∠FAB+∠AEH=90°,
∴∠G=∠FAB,
∴FA=FG,
∵FB⊥AG,
∴AB=BG,
∵(2+FG)2=BG×AG=2BG2①
BG2=FG2﹣BF2②
由①、②得:FG2﹣4FG﹣12=0,
∴FG1=6,F(xiàn)G2=﹣2(舍去),
∴AB=BG=,
∴⊙O半徑為2.
科目:初中數(shù)學(xué) 來源: 題型:
【題目】一次函數(shù)y=﹣kx+k與反比例函數(shù)y=﹣(k≠0)在同一坐標系中的圖象可能是( 。
A. B. C. D.
查看答案和解析>>
科目:初中數(shù)學(xué) 來源: 題型:
【題目】撫順某中學(xué)為了解八年級學(xué)生的體能狀況,從八年級學(xué)生中隨機抽取部分學(xué)生進行體能測試,測試結(jié)果分為A,B,C,D四個等級.請根據(jù)兩幅統(tǒng)計圖中的信息回答下列問題:
(1)本次抽樣調(diào)查共抽取了多少名學(xué)生?
(2)求測試結(jié)果為C等級的學(xué)生數(shù),并補全條形圖;
(3)若該中學(xué)八年級共有700名學(xué)生,請你估計該中學(xué)八年級學(xué)生中體能測試結(jié)果為D等級的學(xué)生有多少名?
(4)若從體能為A等級的2名男生2名女生中隨機的抽取2名學(xué)生,做為該校培養(yǎng)運動員的重點對象,請用列表法或畫樹狀圖的方法求所抽取的兩人恰好都是男生的概率.
查看答案和解析>>
科目:初中數(shù)學(xué) 來源: 題型:
【題目】如圖1,在直角坐標系中,點A的坐標為(1,0),以O(shè)A為邊在第四象限內(nèi)作等邊△AOB,點C為x軸的正半軸上一動點(OC>1),連接BC,以BC為邊在第四象限內(nèi)作等邊△CBD,直線DA交y軸于點E.
(1)試問△OBC與△ABD全等嗎?并證明你的結(jié)論;
(2)隨著點C位置的變化,點E的位置是否會發(fā)生變化?若沒有變化,求出點E的坐標;若有變化,請說明理由;
(3)如圖2,以O(shè)C為直徑作圓,與直線DE分別交于點F、G,設(shè)AC=m,AF=n,用含n的代數(shù)式表示m
查看答案和解析>>
科目:初中數(shù)學(xué) 來源: 題型:
【題目】如圖,BC是⊙O的直徑,D、E是⊙O上的兩點,且弧CD=DE,連接EB、DO.
(1)求證:EB∥DO;
(2)連接EC,在∠CEB的外部作∠BEA=∠C,直線EA交CB的延長線于A,求證:直線EA是⊙O的切線;
(3)若EA=2,AB=1,求⊙O的半徑長.
查看答案和解析>>
科目:初中數(shù)學(xué) 來源: 題型:
【題目】閱讀材料,解答下列問題.
如圖1,已知△ABC中,AD 為中線.延長AD至點E,使 DE=AD.在△ADC和△EDB中,AD=DE,∠ADC=∠EDB,BD=CD,所以,△ACD≌△EBD,進一步可得到AC=BE,AC//BE等結(jié)論.
在已知三角形的中線時,我們經(jīng)常用“倍長中線”的輔助線來構(gòu)造全等三角形,并進一步解決一些相關(guān)的計算或證明題.
解決問題:如圖2,在△ABC中,AD是三角形的中線,點F為AD上一點,且BF=AC,連結(jié)并延長BF交AC于點E,求證:AE=EF.
查看答案和解析>>
科目:初中數(shù)學(xué) 來源: 題型:
【題目】某學(xué)習(xí)小組在討論“變化的三角形”時,知道大三角形與小三角形是位似圖形(如圖所示),則小三角形上的頂點(a,b)對應(yīng)于大三角形上的頂點 ( )
A. (-2a,-2b) B. (2a,2b) C. (-2b,-2a) D. (-2a,-b)
查看答案和解析>>
科目:初中數(shù)學(xué) 來源: 題型:
【題目】如圖,在平面直角坐標系xOy內(nèi),函數(shù)y=x的圖象與反比例函數(shù)y=(k≠0)圖象有公共點A,點A的坐標為(4,a),AB⊥x軸,垂足為點B.
(1)求反比例函數(shù)的解析式;
(2)點C是第一象限內(nèi)直線OA上一點,過點C作直線CD∥AB,與反比例函數(shù)y=(k≠0)的圖象交于點D,且點C在點D的上方,CD=AB,求點D的坐標.
查看答案和解析>>
科目:初中數(shù)學(xué) 來源: 題型:
【題目】如圖,在△ABC中,∠BAC=90°,AD是高,BE是中線,CF是角平分線,CF交AD于G,交BE于H.下列結(jié)論:①S△ABE=S△BCE;②∠AFG=∠AGF;③∠FAG=2∠ACF;④BH=CH.其中所有正確結(jié)論的序號是
A.①②③④B.①②③C.②④D.①③
查看答案和解析>>
湖北省互聯(lián)網(wǎng)違法和不良信息舉報平臺 | 網(wǎng)上有害信息舉報專區(qū) | 電信詐騙舉報專區(qū) | 涉歷史虛無主義有害信息舉報專區(qū) | 涉企侵權(quán)舉報專區(qū)
違法和不良信息舉報電話:027-86699610 舉報郵箱:58377363@163.com