如果=36,求x

練習冊系列答案
相關(guān)習題

科目:初中數(shù)學 來源: 題型:

三角形中,頂角等于36°的等腰三角形稱為黃金三角形,如圖1,在△ABC中,已知:ABAC,且∠A=36°.

 

 

  1.在圖1中,用尺規(guī)作AB的垂直平分線交ACD,并連接BD(保留作圖痕跡,不寫作法);

   2.△BCD是不是黃金三角形,如果是,請給出證明;如果不是,請說明理由;

   3.設(shè),試求k的值;

  4.如圖2,在△A1B1C1中,已知A1B1A1C1,∠A1=108°,且A1B1AB,

請直接寫出的值.

 

 

查看答案和解析>>

科目:初中數(shù)學 來源:2011-2012學年安徽省馬鞍山六中中考模擬數(shù)學卷 題型:解答題

三角形中,頂角等于36°的等腰三角形稱為黃金三角形,如圖1,在△ABC中,已知:ABAC,且∠A=36°.

【小題1】在圖1中,用尺規(guī)作AB的垂直平分線交ACD,并連接BD(保留作圖痕跡,不寫作法);
【小題2】△BCD是不是黃金三角形,如果是,請給出證明;如果不是,請說明理由;
【小題3】設(shè),試求k的值;
【小題4】如圖2,在△A1B1C1中,已知A1B1A1C1,∠A1=108°,且A1B1AB,
請直接寫出的值.

查看答案和解析>>

科目:初中數(shù)學 來源:2013屆江蘇省南京市白下區(qū)中考二模數(shù)學試卷(帶解析) 題型:解答題

(1)如圖①,P為△ABC的邊AB上一點(P不與點A、點B重合),連接PC,如果△CBP∽△ABC,那么就稱P為△ABC的邊AB上的相似點.
畫法初探
①如圖②,在△ABC中,∠ACB>90°,畫出△ABC的邊AB上的相似點P(畫圖工具不限,保留畫圖痕跡或有必要的說明);

辯證思考
②是不是所有的三角形都存在它的邊上的相似點?如果是,請說明理由;如果不是,請找出一個不存在邊上相似點的三角形;
特例分析
③已知P為△ABC的邊AB上的相似點,連接PC,若△ACP∽△ABC,則△ABC的形狀是   
④如圖③,在△ABC中,AB=AC,∠A=36°,P是邊AB上的相似點,求的值.
(2)在矩形ABCD中,AB=a,BC=b(a≥b).P是AB上的點(P不與點A、點B重合),作PQ⊥CD,垂足為Q.如果矩形ADQP∽矩形ABCD,那么就稱PQ為矩形ABCD的邊AB、CD上的相似線.

①類比(1)中的“畫法初探”,可以提出問題:對于如圖④的矩形ABCD,在不限制畫圖工具的前提下,如何畫出它的邊AB、CD上的相似線PQ呢?
你的解答是:   (只需描述PQ的畫法,不需在圖上畫出PQ).
②請繼續(xù)類比(1)中的“辯證思考”、“特例分析”兩個欄目對矩形的相似線進行研究,要求每個欄目提出一個問題并解決.

查看答案和解析>>

科目:初中數(shù)學 來源:2012-2013學年江蘇省南京市白下區(qū)中考二模數(shù)學試卷(解析版) 題型:解答題

(1)如圖①,P為△ABC的邊AB上一點(P不與點A、點B重合),連接PC,如果△CBP∽△ABC,那么就稱P為△ABC的邊AB上的相似點.

畫法初探

①如圖②,在△ABC中,∠ACB>90°,畫出△ABC的邊AB上的相似點P(畫圖工具不限,保留畫圖痕跡或有必要的說明);

辯證思考

②是不是所有的三角形都存在它的邊上的相似點?如果是,請說明理由;如果不是,請找出一個不存在邊上相似點的三角形;

特例分析

③已知P為△ABC的邊AB上的相似點,連接PC,若△ACP∽△ABC,則△ABC的形狀是   ;

④如圖③,在△ABC中,AB=AC,∠A=36°,P是邊AB上的相似點,求的值.

(2)在矩形ABCD中,AB=a,BC=b(a≥b).P是AB上的點(P不與點A、點B重合),作PQ⊥CD,垂足為Q.如果矩形ADQP∽矩形ABCD,那么就稱PQ為矩形ABCD的邊AB、CD上的相似線.

①類比(1)中的“畫法初探”,可以提出問題:對于如圖④的矩形ABCD,在不限制畫圖工具的前提下,如何畫出它的邊AB、CD上的相似線PQ呢?

你的解答是:   (只需描述PQ的畫法,不需在圖上畫出PQ).

②請繼續(xù)類比(1)中的“辯證思考”、“特例分析”兩個欄目對矩形的相似線進行研究,要求每個欄目提出一個問題并解決.

 

查看答案和解析>>

同步練習冊答案