分析 連接OB.首先根據(jù)反比例函數(shù)的比例系數(shù)k的幾何意義,得出S△AON=S△COM=$\frac{1}{2}$k,然后根據(jù)平行線分線段成比例定理得出$\frac{CM}{BM}$=$\frac{DM}{MN}$=$\frac{1}{3}$,$\frac{BM}{BC}$=$\frac{3}{4}$,從而求得S△BOM=3S△COM=$\frac{3}{2}$k,S△BOC=S△AOB=$\frac{1}{2}$k+$\frac{3}{2}$k=2k,進(jìn)一步求得S1=$\frac{9}{32}$×2S△BOC=$\frac{9}{32}$×4k=$\frac{9}{8}$k,最后由S△OMN=S矩形AOCB-S△AON-S△COM-S△BMN=4k-$\frac{1}{2}$k-$\frac{1}{2}$k-$\frac{9}{8}$k=$\frac{15}{8}$k得出結(jié)果.
解答 解:連接OB.
∵M(jìn)、N是反比例函數(shù)$y=\frac{k}{x}$(k為常數(shù),且k>0)的圖象上的點(diǎn),EA⊥x軸于A,F(xiàn)C⊥y軸于C,
∴S△AON=S△COM=$\frac{1}{2}$k.
∵$\frac{DM}{DN}=\frac{1}{4}$,
∴$\frac{DM}{MN}$=$\frac{1}{3}$,
∵AB∥OD,
∴$\frac{CM}{BM}$=$\frac{DM}{MN}$=$\frac{1}{3}$,
∴$\frac{BM}{BC}$=$\frac{3}{4}$,
∴S△BOM=3S△COM=$\frac{3}{2}$k,
∴S△BOC=S△AOB=$\frac{1}{2}$k+$\frac{3}{2}$k=2k,
∴S△BON=S△BOC-S△AON=2k-$\frac{1}{2}$k=$\frac{3}{2}$k,S矩形=4k,
∴$\frac{AN}{BN}$=$\frac{1}{3}$,
∴$\frac{BN}{AB}$=$\frac{3}{4}$,
∴$\frac{BM•BN}{BC•AB}$=$\frac{9}{16}$,
∴$\frac{\frac{1}{2}BM•BN}{BC•AB}$=$\frac{1}{2}$×$\frac{BM•BN}{BC•AB}$=$\frac{9}{32}$,
∴$\frac{{s}_{1}}{{s}_{矩形ABCD}}$=$\frac{9}{32}$,
∴S1=$\frac{9}{32}$×2S△BOC=$\frac{9}{32}$×4k=$\frac{9}{8}$k,
∵S△OMN=S矩形AOCB-S△AON-S△COM-S△BMN=4k-$\frac{1}{2}$k-$\frac{1}{2}$k-$\frac{9}{8}$k=$\frac{15}{8}$k.
∴$\frac{s_1}{s_2}$=$\frac{\frac{9k}{8}}{\frac{15k}{8}}$=$\frac{3}{5}$.
故答案是:$\frac{3}{5}$.
點(diǎn)評 本題是反比例函數(shù)的綜合題,主要考查反比例函數(shù)的比例系數(shù)k與其圖象上的點(diǎn)與原點(diǎn)所連的線段、坐標(biāo)軸、向坐標(biāo)軸作垂線所圍成的直角三角形面積S的關(guān)系,即S=$\frac{1}{2}$|k|.得出$\frac{AN}{BN}$=$\frac{1}{3}$,$\frac{BN}{AB}$=$\frac{3}{4}$,是解決本題的關(guān)鍵.
年級 | 高中課程 | 年級 | 初中課程 |
高一 | 高一免費(fèi)課程推薦! | 初一 | 初一免費(fèi)課程推薦! |
高二 | 高二免費(fèi)課程推薦! | 初二 | 初二免費(fèi)課程推薦! |
高三 | 高三免費(fèi)課程推薦! | 初三 | 初三免費(fèi)課程推薦! |
科目:初中數(shù)學(xué) 來源: 題型:選擇題
A. | x<-2 | B. | x>-2 | C. | x>2 | D. | x<2 |
查看答案和解析>>
科目:初中數(shù)學(xué) 來源: 題型:選擇題
A. | 第一、三、四象限 | B. | 第一、二、三象限 | C. | 第二、三、四象限 | D. | 第一、二、四象限 |
查看答案和解析>>
科目:初中數(shù)學(xué) 來源: 題型:解答題
查看答案和解析>>
科目:初中數(shù)學(xué) 來源: 題型:填空題
查看答案和解析>>
科目:初中數(shù)學(xué) 來源: 題型:解答題
查看答案和解析>>
科目:初中數(shù)學(xué) 來源: 題型:選擇題
A. | 1 | B. | 2 | C. | 3 | D. | 4 |
查看答案和解析>>
科目:初中數(shù)學(xué) 來源: 題型:選擇題
A. | 一組鄰邊相等的矩形是正方形 | |
B. | 對角線互相垂直的平行四邊形是菱形 | |
C. | 等腰梯形的對角和相等 | |
D. | 矩形的對角線互相垂直平分 |
查看答案和解析>>
湖北省互聯(lián)網(wǎng)違法和不良信息舉報(bào)平臺(tái) | 網(wǎng)上有害信息舉報(bào)專區(qū) | 電信詐騙舉報(bào)專區(qū) | 涉歷史虛無主義有害信息舉報(bào)專區(qū) | 涉企侵權(quán)舉報(bào)專區(qū)
違法和不良信息舉報(bào)電話:027-86699610 舉報(bào)郵箱:58377363@163.com