【題目】如圖,已知反比例函數(shù)y1= 與一次函數(shù)y2=k2x+b的圖象交于點(diǎn)A(1,8),B(﹣4,m)兩點(diǎn).
(1)求k1 , k2 , b的值;
(2)求△AOB的面積;
(3)請(qǐng)直接寫出不等式 x+b的解.
【答案】
(1)解:∵反比例函數(shù)y= 與一次函數(shù)y=k2x+b的圖象交于點(diǎn)A(1,8)、B(﹣4,m),
∴k1=1×8=8,m=8÷(﹣4)=﹣2,
∴點(diǎn)B的坐標(biāo)為(﹣4,﹣2).
將A(1,8)、B(﹣4,﹣2)代入y2=k2x+b中,
,解得: .
∴k1=8,k2=2,b=6.
(2)解:當(dāng)x=0時(shí),y2=2x+6=6,
∴直線AB與y軸的交點(diǎn)坐標(biāo)為(0,6).
∴S△AOB= ×6×4+ ×6×1=15.
(3)解:觀察函數(shù)圖象可知:當(dāng)﹣4<x<0或x>1時(shí),一次函數(shù)的圖象在反比例函數(shù)圖象的上方,
∴不等式 x+b的解為﹣4≤x<0或x≥1.
【解析】(1)由點(diǎn)A的坐標(biāo)利用反比例函數(shù)圖象上點(diǎn)的坐標(biāo)特征即可得出反比例函數(shù)解析式,再結(jié)合點(diǎn)B的橫坐標(biāo)即可得出點(diǎn)B的坐標(biāo),根據(jù)點(diǎn)A、B的坐標(biāo)利用待定系數(shù)法即可求出一次函數(shù)解析式;(2)根據(jù)一次函數(shù)圖象上點(diǎn)的坐標(biāo)特征即可求出一次函數(shù)圖象與y軸的交點(diǎn)坐標(biāo),再利用分割圖形法即可求出△AOB的面積;(3)根據(jù)兩函數(shù)圖象的上下位置關(guān)系即可得出不等式的解集.
年級(jí) | 高中課程 | 年級(jí) | 初中課程 |
高一 | 高一免費(fèi)課程推薦! | 初一 | 初一免費(fèi)課程推薦! |
高二 | 高二免費(fèi)課程推薦! | 初二 | 初二免費(fèi)課程推薦! |
高三 | 高三免費(fèi)課程推薦! | 初三 | 初三免費(fèi)課程推薦! |
科目:初中數(shù)學(xué) 來源: 題型:
【題目】將一張矩形紙片ABCD如圖所示那樣折起,使頂點(diǎn)C落在C′處,其中AB=4,若∠C′ED=30°,則折痕ED的長為( )
A.4
B.
C.8
D.
查看答案和解析>>
科目:初中數(shù)學(xué) 來源: 題型:
【題目】如圖,△ABC中,∠C=90°,CA=CB=1,將△ABC繞點(diǎn)B順時(shí)針旋轉(zhuǎn)45°,得到△DBE(A、D兩點(diǎn)為對(duì)應(yīng)點(diǎn)),畫出旋轉(zhuǎn)后的圖形,并求出線段AE的長.
查看答案和解析>>
科目:初中數(shù)學(xué) 來源: 題型:
【題目】如圖1,拋物線y=﹣x2+bx+c經(jīng)過A(﹣1,0),B(4,0)兩點(diǎn),與y軸相交于點(diǎn)C,連結(jié)BC,點(diǎn)P為拋物線上一動(dòng)點(diǎn),過點(diǎn)P作x軸的垂線l,交直線BC于點(diǎn)G,交x軸于點(diǎn)E.
(1)求拋物線的表達(dá)式;
(2)當(dāng)P位于y軸右邊的拋物線上運(yùn)動(dòng)時(shí),過點(diǎn)C作CF⊥直線l,F(xiàn)為垂足,當(dāng)點(diǎn)P運(yùn)動(dòng)到何處時(shí),以P,C,F(xiàn)為頂點(diǎn)的三角形與△OBC相似?并求出此時(shí)點(diǎn)P的坐標(biāo);
(3)如圖2,當(dāng)點(diǎn)P在位于直線BC上方的拋物線上運(yùn)動(dòng)時(shí),連結(jié)PC,PB,請(qǐng)問△PBC的面積S能否取得最大值?若能,請(qǐng)求出最大面積S,并求出此時(shí)點(diǎn)P的坐標(biāo),若不能,請(qǐng)說明理由.
查看答案和解析>>
科目:初中數(shù)學(xué) 來源: 題型:
【題目】在△ABC中,點(diǎn)D,E分別在AB,AC上,且CD與BE相交于點(diǎn)F,已知△BDF的面積為6,△BCF的面積為9,△CEF的面積為6,則四邊形ADFE的面積為 .
查看答案和解析>>
科目:初中數(shù)學(xué) 來源: 題型:
【題目】二次函數(shù)y=ax2+bx+c(a≠0)的圖象如圖所示,下列說法:①b2﹣4ac=0;②2a+b=0;③若(x1 , y1),(x2 , y2)在函數(shù)圖象上,當(dāng)x1<x2時(shí),y1<y2;④a﹣b+c<0.其中正確的是( )
A.②④
B.③④
C.②③④
D.①②④
查看答案和解析>>
科目:初中數(shù)學(xué) 來源: 題型:
【題目】如圖,在平面直角坐標(biāo)系xoy中,直線y= x+2與x軸交于點(diǎn)A,與y軸交于點(diǎn)C,拋物線y=ax2+bx+c的對(duì)稱軸是x=﹣ ,且經(jīng)過A,C兩點(diǎn),與x軸的另一個(gè)交點(diǎn)為點(diǎn)B.
(1)求拋物線解析式.
(2)若點(diǎn)P為直線AC上方的拋物線上的一點(diǎn),連接PA,PC.求四邊形PAOC的面積的最大值,并求出此時(shí)點(diǎn)P的坐標(biāo).
(3)拋物線上是否存在點(diǎn)M,過點(diǎn)M作MN垂直x軸于點(diǎn)N,使得以點(diǎn)A、M、N為頂點(diǎn)的三角形與△AOC相似?若存在,求出點(diǎn)M的坐標(biāo);若不存在,請(qǐng)說明理由.
查看答案和解析>>
科目:初中數(shù)學(xué) 來源: 題型:
【題目】將△ABC繞點(diǎn)A按逆時(shí)針方向旋轉(zhuǎn)θ度,并使各邊長變?yōu)樵瓉淼膎倍,得△AB′C′,如圖①所示,∠BAB′=θ, = = =n,我們將這種變換記為[θ,n].
(1)如圖①,對(duì)△ABC作變換[60°, ]得到△AB′C′,則S△AB'C:S△ABC=;直線BC與直線B′C′所夾的銳角為度;
(2)如圖②,△ABC中,∠BAC=30°,∠ACB=90°,對(duì)△ABC作變換[θ,n]得到△AB′C′,使點(diǎn)B、C、C′在同一直線上,且四邊形ABB′C′為矩形,求θ和n的值;
(3)如圖③,△ABC中,AB=AC,∠BAC=36°,BC=1,對(duì)△ABC作變換[θ,n]得到△AB′C′,使點(diǎn)B、C、B′在同一直線上,且四邊形ABB′C′為平行四邊形,求θ和n的值.
查看答案和解析>>
科目:初中數(shù)學(xué) 來源: 題型:
【題目】二次函數(shù)y=ax2+bx+c(a≠0)的大致圖象如圖,關(guān)于該二次函數(shù),下列說法錯(cuò)誤的是( )
A.函數(shù)有最小值
B.對(duì)稱軸是直線x=
C.當(dāng)x< ,y隨x的增大而減小
D.當(dāng)﹣1<x<2時(shí),y>0
查看答案和解析>>
百度致信 - 練習(xí)冊(cè)列表 - 試題列表
湖北省互聯(lián)網(wǎng)違法和不良信息舉報(bào)平臺(tái) | 網(wǎng)上有害信息舉報(bào)專區(qū) | 電信詐騙舉報(bào)專區(qū) | 涉歷史虛無主義有害信息舉報(bào)專區(qū) | 涉企侵權(quán)舉報(bào)專區(qū)
違法和不良信息舉報(bào)電話:027-86699610 舉報(bào)郵箱:58377363@163.com