【題目】已知為坐標(biāo)原點(diǎn),拋物線軸相交于點(diǎn).與軸交于點(diǎn),點(diǎn),在直線上.

1)當(dāng)隨著的增大而增大時(shí),求自變量的取值范圍;

2)將拋物線向左平移個(gè)單位,記平移后隨著的增大而增大的部分為,直線向下平移個(gè)單位,當(dāng)平移后的直線與有公共點(diǎn)時(shí),求的最小值.

【答案】1;(2.

【解析】

1)利用C0,-3)可以推知c=-3,得出AB點(diǎn)坐標(biāo),進(jìn)而求出函數(shù)解析式,進(jìn)而得出答案;
2)利用c=-3,則y1=x2-2x-3=x-12-4,y2=-3x-3,y1向左平移n個(gè)單位后,則解析式為:y3=x-1+n2-4,進(jìn)而求出平移后的直線與P有公共點(diǎn)時(shí)得出n的取值范圍,進(jìn)而利用配方法求出函數(shù)最值.

解:(1)∵點(diǎn)C0-3),點(diǎn)AC在直線y2=-3x+t上,
-3×0+t=-3,得t=-3,
y2=-3x-3,
當(dāng)y2=0時(shí),x=-1,
∴點(diǎn)A的坐標(biāo)為(-1,0),
x1=-1,
|x1|+|x2|=4,
x2=±3,
當(dāng)x2=3時(shí),
∵拋物線y1=ax2+bx+ca≠0)與x軸相交于點(diǎn)A-1,0),B3,0),

y軸交于點(diǎn)C0,-3),
∴該拋物線的對(duì)稱軸是直線x=1,開口向上,
∴當(dāng)y1隨著x的增大而增大時(shí),自變量x的取值范圍是x≥1
當(dāng)x2=-3時(shí),
∵拋物線y1=ax2+bx+ca≠0)與x軸相交于點(diǎn)A-1,0),B-3,0),與y軸交于點(diǎn)C0,-3),
∴該拋物線的對(duì)稱軸是直線x=-2,開口向下,
∴當(dāng)y1隨著x的增大而增大時(shí),自變量x的取值范圍是x≤-2;
∴自變量的取值范圍:x≥1x≤-2
2c=-3,則y1=x2-2x-3=x-12-4,y2=-3x-3,
y1向左平移n個(gè)單位后,則解析式為:y3=x-1+n2-4,
則當(dāng)x≥1-n時(shí),x增大而增大,
y2向下平移n個(gè)單位后,則解析式為:y4=-3x-3-n,
要使平移后直線與P有公共點(diǎn),則當(dāng)x=1-ny3≤y4,
即(1-n-1+n2-4≤-31-n-3-n,
解得:n≥1,
綜上所述:n≥1,
2n2-5n=2n-2-,
∴當(dāng)n=時(shí),2n2-5n的最小值為:-

練習(xí)冊系列答案
相關(guān)習(xí)題

科目:初中數(shù)學(xué) 來源: 題型:

【題目】已知:如圖,在正方形ABCD外取一點(diǎn)E,連接AE、BE、DE.過點(diǎn)A作AE的垂線交DE于點(diǎn)P.若AE=AP=1,PB=.下列結(jié)論:①△APD≌△AEB;②點(diǎn)B到直線AE的距離為;③EB⊥ED;④S△APD+S△APB=1+;⑤S正方形ABCD=4+.其中正確結(jié)論的序號(hào)是(

A.①③④ B.①②⑤ C.③④⑤ D.①③⑤

查看答案和解析>>

科目:初中數(shù)學(xué) 來源: 題型:

【題目】如圖,AB⊙O的直徑,弧ED=BD,連接ED、BD,延長AEBD的延長線于點(diǎn)M,過點(diǎn)D⊙O的切線交AB的延長線于點(diǎn)C

1)若OACD,求陰影部分的面積;

2)求證:DEDM

查看答案和解析>>

科目:初中數(shù)學(xué) 來源: 題型:

【題目】如圖,AB⊙O的直徑,直線CD切⊙O于點(diǎn)M,BECD于點(diǎn)E.

(1)求證:∠BME=∠MAB;

(2)求證:BM2=BEAB;

(3)若BE=,sin∠BAM=,求線段AM的長.

查看答案和解析>>

科目:初中數(shù)學(xué) 來源: 題型:

【題目】如圖,已知 A、B是線段MN上的兩點(diǎn),MN4,MA1,MB1.以A為中心順 時(shí)針旋轉(zhuǎn)點(diǎn)M,以B為中心逆時(shí)針旋轉(zhuǎn)點(diǎn)N,使MN 兩點(diǎn)重合成一點(diǎn)C,構(gòu)成△ABC,設(shè)ABx.(1)則x的取值范圍是_________;(2)△ABC的最大面積是_________.

C

查看答案和解析>>

科目:初中數(shù)學(xué) 來源: 題型:

【題目】如圖1,滑動(dòng)調(diào)節(jié)式遮陽傘的立柱垂直于地面為立柱上的滑動(dòng)調(diào)節(jié)點(diǎn),傘體的截面示意圖為中點(diǎn),,,.當(dāng)點(diǎn)位于初始位置時(shí),點(diǎn)重合(圖2).根據(jù)生活經(jīng)驗(yàn),當(dāng)太陽光線與垂直時(shí),遮陽效果最佳.

(1)上午10:00時(shí),太陽光線與地面的夾角為(圖3),為使遮陽效果最佳,點(diǎn)需從上調(diào)多少距離?(結(jié)果精確到

(2)中午12:00時(shí),太陽光線與地面垂直(圖4),為使遮陽效果最佳,點(diǎn)在(1)的基礎(chǔ)上還需上調(diào)多少距離?(結(jié)果精確到

(參考數(shù)據(jù):,,,

查看答案和解析>>

科目:初中數(shù)學(xué) 來源: 題型:

【題目】點(diǎn)C、D在線段AB上,若點(diǎn)C是線段AD的中點(diǎn),2BD>AD,則下列結(jié)論正確的是( ).

A. CD<AD- BD B. AB>2BD C. BD>AD D. BC>AD

查看答案和解析>>

科目:初中數(shù)學(xué) 來源: 題型:

【題目】在平行四邊形中,,,點(diǎn)分別為、的兩點(diǎn).

1)如圖1,若,且,連接,判斷的數(shù)量關(guān)系及位置關(guān)系,并說明理由;

2)如圖2,,求證:;

3)如圖3,若,點(diǎn)關(guān)于的對(duì)稱點(diǎn)為點(diǎn),點(diǎn)為平行四邊形對(duì)角線的中點(diǎn),連接于點(diǎn),求的長.

查看答案和解析>>

科目:初中數(shù)學(xué) 來源: 題型:

【題目】如圖,在平行四邊形ABCD中,AB=4,BC=8,B=60,過平行四邊形的對(duì)稱中心點(diǎn)O的一條直線與邊AD、BC分別交于點(diǎn)EF,設(shè)直線EFBC的夾角為α

1)當(dāng)α的度數(shù)是_________時(shí),四邊形AFCE為菱形;

2)當(dāng)α的度數(shù)是_________時(shí),四邊形AFCE為矩形;

3)四邊形AFCE能否為正方形?為什么?

查看答案和解析>>

同步練習(xí)冊答案