【題目】如圖菱形ABOCAB,AC分別與⊙O相切于點D、E,若點DAB的中點,則∠DOE=__________.

【答案】60°

【解析】AB,AC分別與⊙O相切于點D、E,可得∠BDO=ADO=AEO=90°,根據(jù)已知條件可得到BD=OB,在RtOBD中,求得∠B=60°,繼而可得∠A=120°,再利用四邊形的內(nèi)角和即可求得∠DOE的度數(shù).

【詳解AB,AC分別與⊙O相切于點D、E,

∴∠BDO=ADO=AEO=90°,

∵四邊形ABOC是菱形,∴AB=BO,A+B=180°,

BD=AB,

BD=OB,

RtOBD中,∠ODB=90°,BD=OB,cosB=,∴∠B=60°,

∴∠A=120°,

∴∠DOE=360°-120°-90°-90°=60°,

故答案為:60°.

練習(xí)冊系列答案
相關(guān)習(xí)題

科目:初中數(shù)學(xué) 來源: 題型:

【題目】如圖,在RtABC中,∠ACB90°,AB的垂直平分線DEBC的延長線于F,若∠F30°,DE1,則EF的長是_____

查看答案和解析>>

科目:初中數(shù)學(xué) 來源: 題型:

【題目】在一張長12cm、寬5cm的矩形紙片內(nèi),要折出一個菱形小華同學(xué)按照取兩組對邊中點的方法折出菱形EFGH見方案一),小麗同學(xué)沿矩形的對角線AC折出CAE=CAD,ACF=ACB的方法得到菱形AECF見方案二).

1你能說出小華、小麗所折出的菱形的理由嗎?

2請你通過計算,比較小華和小麗同學(xué)的折法中,哪種菱形面積較大?

查看答案和解析>>

科目:初中數(shù)學(xué) 來源: 題型:

【題目】如圖,△ABC中,∠ACB=90°,AD平分∠BAC,DE⊥ABE.

(1)若∠BAC=50°,求∠EDA的度數(shù);

(2)求證:直線AD是線段CE的垂直平分線.

查看答案和解析>>

科目:初中數(shù)學(xué) 來源: 題型:

【題目】如圖,等腰三角形ABC的底邊BC長為4,面積是16,腰AC的垂直平分線EF分別交AC,AB邊于E,F點,若點DBC邊的中點,點M為線段EF上一動點,則周長的最小值為______

查看答案和解析>>

科目:初中數(shù)學(xué) 來源: 題型:

【題目】如圖,正六邊形ABCDEF的邊長是6+4,點O1,O2分別是ABF,CDE的內(nèi)心,則O1O2=_____

查看答案和解析>>

科目:初中數(shù)學(xué) 來源: 題型:

【題目】1)一般地,數(shù)軸上表示數(shù)m和數(shù)n的兩點之間的距離等于.如果表示數(shù)a的兩點之間的距離是5,那么__________

2)若數(shù)軸上表示數(shù)a的點位于6之間,求的值;

3)當a取何值時,的值最小,最小值是多少?請說明理由.

查看答案和解析>>

科目:初中數(shù)學(xué) 來源: 題型:

【題目】在平面直角坐標系中,O為坐標原點,A(m,n+1),B(m+2,n).

1)當m=1,n=2.如圖1,連接AB、AO、BO.直接寫出△ABO的面積為 .

2)如圖2,若點A在第二象限、點B在第一象限,連接AB、AO、BO,ABy軸于H,△ABO的面積為2.求點H的坐標.

3)若點A、B在第一象限,在y 軸正半軸上存在點C,使得∠CAB=900,CA=AB,m的值,及OC的長(用含n的式子表示).

查看答案和解析>>

科目:初中數(shù)學(xué) 來源: 題型:

【題目】如圖,是矩形的對角線的交點,、、、分別是、上的點,且

求證:四邊形是矩形;

、、分別是、、的中點,且,,求矩形的面積.

查看答案和解析>>

同步練習(xí)冊答案