已知如圖所示,在△ABC中,AB=AC,AD⊥BC,垂足為點D,AN 是△ABC外角∠CAM的平分線,CE⊥AN,垂足為點E。
(1)求證:四邊形ADCE為矩形;
(2)△ABC滿足什么條件時,四邊形ADCE是一個正方形?并給出證明。
證明:(1)在△ABC中,AB=AC,AD⊥BC,
∴∠BAD=∠DAC,
∵AN是△ABC外角∠CAM的平分線,
∴∠MAE=∠CAE,
∴∠DAE=∠DAC+∠CAE=×180°=90°,
又∵AD⊥BC,CE⊥AN,
∴∠ADC=∠CEA=90°,
∴四邊形ADCE為矩形;
(2)例如,當AD=BC時,四邊形ADCE是正方形,
證明:∵AB=AC,AD⊥BC于D,
∴DC=BC,
又AD=BC,∴DC=AD,
由(1)知四邊形ADCE為矩形,
∴矩形ADCE是正方形。
練習冊系列答案
相關習題

科目:初中數(shù)學 來源: 題型:

精英家教網(wǎng)已知如圖所示,在梯形ABCD中,AD∥BC,AB=AD=DC=8,∠B=60°,連接AC.
(1)求cos∠ACB的值;
(2)若E、F分別是AB、DC的中點,連接EF,求線段EF的長.

查看答案和解析>>

科目:初中數(shù)學 來源: 題型:

精英家教網(wǎng)已知如圖所示,在平行四邊形ABCD中,∠A=60°,E、F分別是AB、CD的中點,且AB=2AD.
(1)求證:BD=
3
EF;
(2)試判斷EF與BD的位置關系.

查看答案和解析>>

科目:初中數(shù)學 來源: 題型:

20、已知如圖所示,在Rt△ABC中,∠A=90°,∠BCA=75°,AC=8cm,DE垂直平分BC,則BE的長是( 。

查看答案和解析>>

科目:初中數(shù)學 來源: 題型:

(2011•巴中)已知如圖所示,在梯形ABCD中,AD∥BC,點M是AD)的中點.連接BM交AC于N.BM的延長線交CD的延長線于E.
(1)求證:
EM
EB
=
AM
BC

(2)若MN=1cm,BN=3cm,求線段EM的長.

查看答案和解析>>

科目:初中數(shù)學 來源: 題型:

(2011•巴中)已知如圖所示,在平面直角坐標系中,四邊形ABC0為梯形,BC∥A0,四個頂點坐標分別為A(4,0),B(1,4),C(0,4),O(0,O).一動點P從O出發(fā)以每秒1個單位長度的速度沿OA的方向向A運動;同時,動點Q從A出發(fā),以每秒2個單位長度的速度沿A→B→C的方向向C運動.兩個動點若其中一個到達終點,另一個也隨之停止.設其運動時間為t秒.
(1)求過A,B,C三點的拋物線的解析式;
(2)當t為何值時,PB與AQ互相平分;
(3)連接PQ,設△PAQ的面積為S,探索S與t的函數(shù)關系式.求t為何值時,S有最大值?最大值是多少?

查看答案和解析>>

同步練習冊答案