【題目】多項(xiàng)式x3﹣3x2y+4x3y2+5y3是( )
A.按字母x的升冪排列
B.按字母x的降冪排列
C.按字母y的升冪排列
D.按字母y的降冪排列
年級(jí) | 高中課程 | 年級(jí) | 初中課程 |
高一 | 高一免費(fèi)課程推薦! | 初一 | 初一免費(fèi)課程推薦! |
高二 | 高二免費(fèi)課程推薦! | 初二 | 初二免費(fèi)課程推薦! |
高三 | 高三免費(fèi)課程推薦! | 初三 | 初三免費(fèi)課程推薦! |
科目:初中數(shù)學(xué) 來(lái)源: 題型:
【題目】如圖所示,在矩形ABCD中,對(duì)角線AC,BD相交于點(diǎn)O,∠BOC=120°,AC=6,求:
(1)AB的長(zhǎng);
(2)矩形ABCD的面積.
查看答案和解析>>
科目:初中數(shù)學(xué) 來(lái)源: 題型:
【題目】已知拋物線C1:y=ax2+bx+(a≠0)經(jīng)過(guò)點(diǎn)A(-1,0)和B(3,0).
(1)求拋物線C1的解析式,并寫出其頂點(diǎn)C的坐標(biāo);
(2)如圖1,把拋物線C1沿著直線AC方向平移到某處時(shí)得到拋物線C2,此時(shí)點(diǎn)A,C分別平移到點(diǎn)D,E處.設(shè)點(diǎn)F在拋物線C1上且在x軸的下方,若△DEF是以EF為底的等腰直角三角形,求點(diǎn)F的坐標(biāo);
(3)如圖2,在(2)的條件下,設(shè)點(diǎn)M是線段BC上一動(dòng)點(diǎn),EN⊥EM交直線BF于點(diǎn)N,點(diǎn)P為線段MN的中點(diǎn),當(dāng)點(diǎn)M從點(diǎn)B向點(diǎn)C運(yùn)動(dòng)時(shí):
①tan∠ENM的值如何變化?請(qǐng)說(shuō)明理由;
②點(diǎn)M到達(dá)點(diǎn)C時(shí),直接寫出點(diǎn)P經(jīng)過(guò)的路線長(zhǎng).
查看答案和解析>>
科目:初中數(shù)學(xué) 來(lái)源: 題型:
【題目】如圖,將ABCD的邊BA延長(zhǎng)到點(diǎn)E,使AE=AB,連接EC,交AD于點(diǎn)F,連接AC、ED.
(1)求證:四邊形ACDE是平行四邊形;
(2)若∠AFC=2∠B,求證:四邊形ACDE是矩形.
查看答案和解析>>
科目:初中數(shù)學(xué) 來(lái)源: 題型:
【題目】某公司將5名員工分配至3個(gè)不同的部門,每個(gè)部門至少分配一名員工,其中甲、乙兩名員工必須分配在同一個(gè)部門的不同分配方法數(shù)為( )
A.24
B.30
C.36
D.42
查看答案和解析>>
科目:初中數(shù)學(xué) 來(lái)源: 題型:
【題目】2015年1月,市教育局在全市中小學(xué)中選取了63所學(xué)校從學(xué)生的思想品德、學(xué)業(yè)水平、學(xué)業(yè)負(fù)擔(dān)、身心發(fā)展和興趣特長(zhǎng)五個(gè)維度進(jìn)行了綜合評(píng)價(jià).評(píng)價(jià)小組在選取的某中學(xué)七年級(jí)全體學(xué)生中隨機(jī)抽取了若干名學(xué)生進(jìn)行問(wèn)卷調(diào)查,了解他們每天在課外用于學(xué)習(xí)的時(shí)間,并繪制成如下不完整的統(tǒng)計(jì)圖. 根據(jù)上述信息,解答下列問(wèn)題:
(1)本次抽取的學(xué)生人數(shù)是 ______ ;扇形統(tǒng)計(jì)圖中的圓心角α等于 ______ ;補(bǔ)全統(tǒng)計(jì)直方圖;
(2)被抽取的學(xué)生還要進(jìn)行一次50米跑測(cè)試,每5人一組進(jìn)行.在隨機(jī)分組時(shí),小紅、小花兩名女生被分到同一個(gè)小組,請(qǐng)用列表法或畫樹(shù)狀圖求出她倆在抽道次時(shí)抽在相鄰兩道的概率.
查看答案和解析>>
科目:初中數(shù)學(xué) 來(lái)源: 題型:
【題目】如圖,點(diǎn)B(0,b),點(diǎn)A(a,0)分別在y軸、x軸正半軸上,且滿足 +(b2﹣16)2=0.
(1)求A、B兩點(diǎn)的坐標(biāo),∠OAB的度數(shù);
(2)如圖1,已知H(0,1),在第一象限內(nèi)存在點(diǎn)G,HG交AB于E,使BE為△BHG的中線,且S△BHE=3,
①求點(diǎn)E到BH的距離;
②求點(diǎn)G的坐標(biāo);
(3)如圖2,C,D是y軸上兩點(diǎn),且BC=OD,連接AD,過(guò)點(diǎn)O作MN⊥AD于點(diǎn)N,交直線AB于點(diǎn)M,連接CM,求∠ADO+∠BCM的值.
查看答案和解析>>
科目:初中數(shù)學(xué) 來(lái)源: 題型:
【題目】如圖,AB是⊙O的直徑,點(diǎn)P是y軸正半軸上的一點(diǎn),⊙O與y軸正半軸交于點(diǎn)C,PB交⊙O于點(diǎn)D,點(diǎn)D是劣弧的中點(diǎn),AB=.
(1)求 P點(diǎn)的坐標(biāo)及的值;
(2)求證:DP2=OP·CP.
查看答案和解析>>
百度致信 - 練習(xí)冊(cè)列表 - 試題列表
湖北省互聯(lián)網(wǎng)違法和不良信息舉報(bào)平臺(tái) | 網(wǎng)上有害信息舉報(bào)專區(qū) | 電信詐騙舉報(bào)專區(qū) | 涉歷史虛無(wú)主義有害信息舉報(bào)專區(qū) | 涉企侵權(quán)舉報(bào)專區(qū)
違法和不良信息舉報(bào)電話:027-86699610 舉報(bào)郵箱:58377363@163.com