一圓錐的側(cè)面展開圖是半徑為2的半圓,則該圓錐的全面積是        .
3π.

試題分析:半圓的面積就是圓錐的側(cè)面積,根據(jù)半圓的弧長等于圓錐底面圓的周長,即可求得圓錐底面圓的半徑,進而求得面積,從而求解.
側(cè)面積是:×π×22=2π.
底面的周長是2π.
則底面圓半徑是1,面積是π.
則該圓錐的全面積是:2π+π=3π.
練習(xí)冊系列答案
相關(guān)習(xí)題

科目:初中數(shù)學(xué) 來源:不詳 題型:解答題

已知:如圖,在Rt△ABC中,∠A=90°,以AB為直徑作⊙O,BC交⊙O于點D,E是邊AC的中點,ED、AB的延長線相交于點F.
求證:(1)DE為⊙O的切線.
(2)AB•DF=AC•BF.

查看答案和解析>>

科目:初中數(shù)學(xué) 來源:不詳 題型:解答題

如圖,在△ABC中,以AB為直徑的⊙O分別交AC、BC于點D、E,點F在AC的延長線上,且AC=CF,∠CBF=∠CFB.
(1)求證:直線BF是⊙O的切線;
(2)若點D,點E分別是弧AB的三等分點,當(dāng)AD=5時,求BF的長;
(3)填空:在(2)的條件下,如果以點C為圓心,r為半徑的圓上總存在不同的兩點到點O的距離為5,則r的取值范圍為             

查看答案和解析>>

科目:初中數(shù)學(xué) 來源:不詳 題型:解答題

如圖,⊙O是△ABC的外接圓,AB=AC,過點A作AD∥BC交BO的延長線于點D.
(1)求證:AD是⊙O的切線;
(2)若⊙O的半徑OB=5,BC=8,求線段AD的長.

查看答案和解析>>

科目:初中數(shù)學(xué) 來源:不詳 題型:填空題

如圖,點C在以AB為直徑的半圓上,AB=8,∠CBA=30°,點D在線段AB上運動,點E與點D關(guān)于AC對稱,DF⊥DE于點D,并交EC的延長線于點F.下列結(jié)論:①CE=CF;②線段EF的最小值為;③當(dāng)AD=2時,EF與半圓相切;④若點F恰好落在BC上,則AD=;⑤當(dāng)點D從點A運動到點B時,線段EF掃過的面積是.其中正確結(jié)論的序號是       

查看答案和解析>>

科目:初中數(shù)學(xué) 來源:不詳 題型:解答題

如圖,“五一”節(jié),小明和同學(xué)一起到游樂場游玩,游樂場的大型摩天輪的半徑為20米,旋轉(zhuǎn)1周需要24分鐘(勻速)。小明乘坐最底部的車廂按逆時針方向旋轉(zhuǎn)(離地面約1米)開始1周的觀光。
(1)4分鐘后小明離地面的高度是多少?
(2)摩天輪啟動多長時間后,小明離地面的高度到達11米?
(3)在旋轉(zhuǎn)一周的過程中,小明將有多長時間連續(xù)保持在離地面31米以上的空中?

查看答案和解析>>

科目:初中數(shù)學(xué) 來源:不詳 題型:解答題

在某張航海圖上,標(biāo)明了三個觀測點的坐標(biāo),如圖,O(0,0)、B(6,0)、C(6,8),由三個觀測點確定的圓形區(qū)域是海洋生物保護區(qū).
(1)求圓形區(qū)域的面積;
(2)某時刻海面上出現(xiàn)-漁船A,在觀測點O測得A位于北偏東45°,同時在觀測點B測得A位于北偏東30°,求觀測點B到A船的距離.(≈1.7,保留三個有效數(shù)字);
(3)當(dāng)漁船A由(2)中位置向正西方向航行時,是否會進入海洋生物保護區(qū)?通過計算回答。

查看答案和解析>>

科目:初中數(shù)學(xué) 來源:不詳 題型:填空題

如圖,將三角板的直角頂點放在⊙O的圓心上,兩條直角邊分別交⊙O于A、B兩點.點P為⊙O上任一點,且與點A、B不重合,連接PA、PB,則∠APB的大小為     

查看答案和解析>>

科目:初中數(shù)學(xué) 來源:不詳 題型:填空題

將一張半徑為4的圓形紙片(如圖①)連續(xù)對折兩次后展開得折痕AB、CD,且AB⊥CD,垂足為M(如圖②),之后將紙片如圖③翻折,使點B與點M重合,折痕EF與AB相交于點N,連接AE、AF(如圖④),則△AEF的面積是__________.

查看答案和解析>>

同步練習(xí)冊答案